Study in the European Union

Study at BME

Your future career begins at the Budapest University of Technology and Economics
Managing Editor: Valéria Balogh
Design & Layout: Tamás Rumi
Photos: János Philip, József Tóth, István Oravecz, György Ádám Horváth

This Catalogue provides information on the programs and services of the Budapest University of Technology and Economics. Curricula, courses, degree requirements, fees and policies are subjects to revision. Specific details may vary from the statements printed here without further notice.
The manuscript was closed on 12 January 2017.

HU ISSN 1786-5352

© Budapest University of Technology and Economics, 2017.
Dear Student,

You are reading the Bulletin of the Budapest University of Technology and Economics. Its direct predecessor, the Institutum Geometricum, was established in 1782 by Emperor Joseph II, as part of the Faculty of Liberal Arts at the University of Buda. During the past 234 years the professors of the university have striven to provide an outstanding quality of education. This has earned the university an international reputation, attracting students and also professors from all over the world.

Our university has eight faculties. They are, in order of foundation: Civil Engineering, Mechanical Engineering, Architecture, Chemical Technology and Biotechnology, Electrical Engineering and Informatics, Transportation Engineering and Vehicle Engineering, Natural Sciences, Economic and Social Sciences.

“Education is the most powerful weapon which you can use to change the world.”

This is the quotation from Nelson Mandela. It is unquestionably true and especially applicable for engineers who have the power to make a better world:
Sustainable energy, clean water, safe transport on roads and bridges producing less pollution, buildings for comfortable living and working, machines and robots for work and for amusement, fast and reliable communications, medical equipment that assure a good quality of life for the individual and can be financed by society, and healthy food for us all. All of these goals need engineering solutions to make the world a safer, better and more exciting place to be. **This is also your responsibility.** You can acquire the necessary knowledge and skills to make your own contribution. As a graduate you will certainly do your best for your colleagues, company and society.

Two components are decisive for a good diploma: good teachers and a good student. I can say our university provides you with excellent teachers – **you must be good students!** I am sure it is worth being so. Besides, you will love it: the university years will be your best memory, the engineering profession will provide you the joy of creation.

Hungary is a member of the European Union. As a student in Budapest you will find general European as well as particular Hungarian cultural customs: food, fashion, folk art, music and dance.

Use this bulletin to help you consider our programs. Come to visit our campus. Better yet, come to study with us for one or two semesters or for an entire degree program. Should you decide to stay for only one semester, this bulletin will also help you choose from among the different semester programs.

The Budapest University of Technology and Economics extends a special welcome to students from abroad.

Károly Veszprémi
vice-rector for education
Available study programmes for 2017/2018 academic year

<table>
<thead>
<tr>
<th>BSc programmes</th>
<th>Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Engineering</td>
<td>Faculty of Chemical Technology and Biotechnology</td>
</tr>
<tr>
<td>Civil Engineering</td>
<td>Faculty of Civil Engineering</td>
</tr>
<tr>
<td>Computer Engineer</td>
<td>Faculty of Electrical Engineering and Informatics</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>Faculty of Natural Sciences</td>
</tr>
<tr>
<td>Mathematics</td>
<td>Faculty of Natural Sciences</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>Faculty of Mechanical Engineering</td>
</tr>
<tr>
<td>Physics</td>
<td>Faculty of Natural Sciences</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MSc programmes</th>
<th>Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Mathematics</td>
<td>Faculty of Natural Sciences</td>
</tr>
<tr>
<td>Architecture (Five-year Integrated Master Program)</td>
<td>Faculty of Architecture</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>Faculty of Chemical Technology and Biotechnology</td>
</tr>
<tr>
<td>Computer Engineer</td>
<td>Faculty of Electrical Engineering and Informatics</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>Faculty of Chemical Technology and Biotechnology</td>
</tr>
<tr>
<td>Environmental Engineering</td>
<td>Faculty of Mechanical Engineering</td>
</tr>
<tr>
<td>Mechanical Engineering Modelling</td>
<td>Faculty of Mechanical Engineering</td>
</tr>
<tr>
<td>Physics</td>
<td>Faculty of Natural Sciences</td>
</tr>
<tr>
<td>Structural Engineering</td>
<td>Faculty of Civil Engineering</td>
</tr>
<tr>
<td>Transport Engineering</td>
<td>Faculty of Transportation Engineering and Vehicle Engineering</td>
</tr>
<tr>
<td>Vehicle Engineering</td>
<td>Faculty of Transportation Engineering and Vehicle Engineering</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PhD programmes</th>
<th>Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study programmes</td>
<td>Faculty</td>
</tr>
<tr>
<td>Architecture Engineering</td>
<td>Faculty of Architecture</td>
</tr>
<tr>
<td>Chemistry</td>
<td>Faculty of Chemical Technology and Biotechnology</td>
</tr>
<tr>
<td>Chemical- Bio- and Environmental Engineering</td>
<td>Faculty of Civil Engineering</td>
</tr>
<tr>
<td>Civil Engineering Sciences and Earth Sciences</td>
<td>Faculty of Civil Engineering</td>
</tr>
<tr>
<td>Computer Engineer</td>
<td>Faculty of Electrical Engineering and Informatics</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>Faculty of Electrical Engineering and Informatics</td>
</tr>
<tr>
<td>Mathematics and Computer Science</td>
<td>Faculty of Natural Sciences</td>
</tr>
<tr>
<td>Mechanical Engineering Science</td>
<td>Faculty of Mechanical Engineering</td>
</tr>
<tr>
<td>Logistic Engineering</td>
<td>Faculty of Transportation Engineering and Vehicle Engineering</td>
</tr>
<tr>
<td>Transportation Engineering</td>
<td>Faculty of Transportation Engineering and Vehicle Engineering</td>
</tr>
<tr>
<td>Vehicle Engineering</td>
<td>Faculty of Transportation Engineering and Vehicle Engineering</td>
</tr>
<tr>
<td>Physical Sciences</td>
<td>Faculty of Natural Sciences</td>
</tr>
</tbody>
</table>

Tuition Fees for 2017/2018 academic year

<table>
<thead>
<tr>
<th>Course</th>
<th>For EU citizens</th>
<th>For non-EU citizens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Course and General Course in Architecture</td>
<td>EUR 3,200 / semester</td>
<td>EUR 3,200 / semester</td>
</tr>
<tr>
<td>Undergraduate Tuition Fees, leading to B.Sc. degree</td>
<td>EUR 2,250 / semester</td>
<td>EUR 3,200 / semester</td>
</tr>
<tr>
<td>Undergraduate Tuition Fees, leading to B.Sc. degree in Civil Engineering</td>
<td>EUR 3,200 / semester</td>
<td>EUR 3,200 / semester</td>
</tr>
<tr>
<td>Graduate Tuition Fees, leading to M.Sc. degree for graduates of external higher education institutions</td>
<td>EUR 3,200 / semester</td>
<td>EUR 3,500 / semester</td>
</tr>
<tr>
<td>Graduate Tuition Fees, leading to M.Sc. degree in Civil Engineering</td>
<td>EUR 3,800 / semester</td>
<td>EUR 3,800 / semester</td>
</tr>
<tr>
<td>Graduate Tuition Fees, leading to M.Sc. degree in Architecture</td>
<td>EUR 2,850 / semester</td>
<td>EUR 3,200 / semester</td>
</tr>
<tr>
<td>Postgraduate Tuition Fees, leading to Ph.D. or DLA degree (Depending on the character of the research and course programs)</td>
<td>EUR 4,500 / semester</td>
<td>EUR 4,500 / semester</td>
</tr>
<tr>
<td>Tuition Fees for special students (courses leading to no degree)</td>
<td>EUR 110/credits (min. 12 lessons/week)</td>
<td>EUR 110/credits (min. 12 lessons/week)</td>
</tr>
<tr>
<td>Tuition Fees for special students (courses leading to no degree) in Civil Engineering</td>
<td>EUR 2,000 / semester minimum</td>
<td>EUR 2,000 / semester minimum</td>
</tr>
</tbody>
</table>
Agencies and representatives in the target countries

Azerbaijan

CELT Colleges
Anar Gurbanzade, Study Abroad Coordinator
Mammad Afordiyev 6, Flat 12, AZ 1001, Baku, Azerbaijan
+994 12 4926853; +994 55 6447280
admissions@celt.az; www.celt.az

AYnur Mammadova, Recruitment Manager
AZ1117, Baku, Azerbaijan, Bilajari region, Yahya Huseynov street 15.
+994 55 990 94 14
E-mail: apply@bme-budapest.com
Website: www.bme-budapest.com
Facebook: https://www.facebook.com/macaristandatehsil

Egypt and Middle East

Manufacturing Institute Group
Professor Dr. Mr. Ashraf Elsayed Mohamed Mohamed
BRNO University of Technology
SOUF SHAMAA-TALON-ST#1-O#28
ALEXANDRIA 21351 - EGYPT
Mobile: 00201147602039
E-mail: ashraf.mohamed@saudieng.org
E-mail: ashaflaysayedm@gmail.com
(Egypt, Oman, Qatar, Bahrain, Libya, Arab Golf countries and Middle east)

Georgia

PRIME STUDY Educational Consulting Agency
Davit Mikeladze
Mirotadze street 1, 8th floor, Tbilisi, 0179, Georgia
phone number: +995571120000
E-mail: info@primestudy.ge
www.primestudy.ge

Ghana

Honorary Consulate of Hungary
Amen D. Kpodo-Tay (Hon. Consul of Hungary)
55 Ring Road East Accra
phone number: +233-20 341 3550
mobile number: +233-20 341 3550
E-mail: ghanakonzul@gmail.com

India

Active synergy consultants. P. Ltd
Ram Sharan Dhakal
Bagbazar 31, 44600 Kathmandu, Nepal
phone number: 097714215496, 9779841356489
Email: info.activesynergy14@gmail.com
www.asc.com.np
(recruit students from India, Bangladesh, Sri Lanka and Nepal)

Angel Management Consultant (CEO)
Asif Syed
Director
Master Mind, V, No. 716, 717 Royal Palms, Aarey Milk Colony
Goregaon East, Mumbai 400065 India

North America IEC Admissions

Masood Basha Lateef - Regional Director
city: Jeddah - Riyadh - Chennai
28 Zahran Tower 5th Floor North of Moraba Bridge - Al Madinah Road
phone number: 00966126821285
E-mail: na.admissions@iecabroad.com
(recruit students from India, Saudi Arabia)

China

Shenyang EU-SINO Education Information Consulting Co., Ltd.
Mr. Chen Qilin
Director
Room 1407, Ouya Lianying Business Building, No.1 Jia, Nanjingnan Str., Heping Dist., Shenyang City, Liaoning Province, China. 110001
Tel: 86-24-23286616/400-006-7997
Web: www.studyinhungary.org
E-mail: eusino_edu@hotmail.com

Cyprus

L.S. Moussoulos Co Ltd. (Studies Dept.)
Mr. Sofocles Moussoulos
President
1: P.O.Box 21454, Nicosia 1509, Cyprus
2: Moussoulos Building, Corner of Ay. Pavlos and I. Kadmos str., Ayios Andreas, 1105 Nicosia, Cyprus
Telephone: 02-781644
Fax: 02-773111
mousoulos@cytanet.com.cy
Iran
Dehlavi Educational Institute
Mehdi Dara Managing Director
Address: No.10, Apt. No. 5, Shekar Abi Alley, Shariati Ave.
Upper Than Motahari St., Tehran, Iran
Telephone: 0098 21 88427100 (10 line)
Fax: 0098 21 88419594
E-mail: studysite@hotmail.com
Pany Dara (in Hungary) pany.dara@yahoo.com

Daneshpoyyan Aria Institute
Dr. Alireza Habibi Director
Unit 2, No.18, 2nd Alley,
South Kaj St., Fatemi Ave.
Tehran 14147-63413, Iran
Tel: +98 21 2235 1161, +98 21 2235 1171
Fax: +98 21 2209 4856
Mobile: +98 912 707 20 83
E-mail: info@open-iran.com
www.open-iran.com

Avicenna College
Dr. Shahrokh Mirzahosseini President
1089 Budapest, Orczy út 3-5.
Telephone: +36 70 439 7497
president@avicenna.hu; klarik@avicenna.hu

Darya Afsoon
Fishing and Food Industries Co.
Ms. E.Hayatdavoudi Managing Director
No. 6, 16th Gandi St. Unit 15
Tehran 15179-1711, Iran
Telephone: (9821) 886 6431, 886 6432, 886 63135
Mobile: (98) 912 105 6116
hayatdavoudie@yahoo.com

MATINIT Institute
Eng. Matin Hashem Manager
Address: Shemiran, Dezashib, Boooli,ABBasi,Mehrnaz No.2
Tehran 19349-35753, Iran
Phone: +9821 22201448
Fax: +9821 22211424
info@majarestan.com; www.majarestan.com

Daneshjooyan Educational and Publication Institute
Mr. Mehdi Dara
Tehran
Address: Apt. No. 5 , No. 10 , Shekarabi St., Shariati Ave.,
Upper Than Motahari Cross
postal code: 1567614668
phone number: 0098 21 88427100 (20 Line)
fax number: 0098 21 88419594
Email: info@study3000.com
Website: www.study3000.com

Avicenna International College
Dr. Shahrokh Mirzahosseini
Hungary
1089 Budapest, Orczy tér 3-5, Hungary.
phone number: +36703171424

Yekta Maktab Ibn Sina / Avicenna International School
Ms. Fatemeh Mirzahosseini
Iran
Kheradmand Shomali, No. 87. 3rd floor, No. 5, Tehran
phone number: +98-912550012

BROrganization and Partners Kft.
Payam Abed Salimi
Hungary
1073 Budapest, Kertész street 22.
phone number: +36704397497

International education Consultancy Services (ECS)
Ms.Leila Naeimipour Director Manager
No10, Zomorrod Tower, Golnabi St, Pasdaran Ave, Tehran, Iran
Tel: (+98) 2122878390
Cell: (+98) 9213998563

Iraq
BME Hungary Ltd
1114 Budapest Móricz Zs. krt. 2.
Hungary

Israel
University International Studies
Mr. Roni Fried
Hazaran 1.
Enterance 10, Floor 2
Netanya, 42504 P.O. Box 8552, Israel
Fax: 972-9-8858287
Mobile: 972-57-4450445
info@uis.co.il; www.uis.co.il

Kazakhstan
Republican Social Association of “Kazakh Tili Kogamy”
named after Konir Mandoki
Suleimenova Dana
Kulsarynskaya str. 33, 060100 Atyrau,
Republic of Kazakhstan
Tel: +7 707 333 7007
Email: sedupost@gmail.com

Kuwait
Kapico Travels and Tours
Pervin Mirza
Al Ghawali Complex
Sharq Kuwait
Tel.: +965 65777066
pervin.mirza@kapicotravels.com

Nepal
Oasis Abroad Study Services & Consultancy Pvt.
Mr. Ram Thapa
Bagbazar 31,
44600 Kathmandu, Nepal
phone number: +977-9851160282

Active synergy consultants. P. Ltd
Ram Sharan Dhakal
Bagbazar 31,
44600 Kathmandu, Nepal
phone number: 097714215496, 9779841356489
Email: info.activesynergy14@gmail.com
www.asc.com.np
(recruit students from India, Bangladesh, Sri Lanka and Nepal)
<table>
<thead>
<tr>
<th>Agencies and Representatives in the Target Countries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pakistan</td>
</tr>
<tr>
<td>Asif Mahmood</td>
</tr>
<tr>
<td>Managing Director</td>
</tr>
<tr>
<td>(MSc. Computer Science, Dipl. DCS, DHE, DWA)</td>
</tr>
<tr>
<td>STUDYLINKER Student Consultancy (SSC)</td>
</tr>
<tr>
<td>(Foreign Student Admission & Advisory Services)</td>
</tr>
<tr>
<td>Tel No. 0345-4149210, 0310-4149210</td>
</tr>
<tr>
<td>Email: info_studylinker@yahoo.com</td>
</tr>
<tr>
<td>LinkedIn: pk.linkedin.com/pub/asif-mahmood/45/652/87b/</td>
</tr>
<tr>
<td>FB: Security Check Required</td>
</tr>
<tr>
<td>Universal Education Consultant</td>
</tr>
<tr>
<td>Imran Ali</td>
</tr>
<tr>
<td>Resham Bazar 4th floor 406</td>
</tr>
<tr>
<td>75620 Karachi, Lahore, Pakistan</td>
</tr>
<tr>
<td>(Near NED University, Karachi)</td>
</tr>
<tr>
<td>phone number: 00923312830497</td>
</tr>
<tr>
<td>Saudi Arabia</td>
</tr>
<tr>
<td>Dr. M.H. Osman Taha</td>
</tr>
<tr>
<td>Hungarian Business Consultant</td>
</tr>
<tr>
<td>P.O. Box 365812 Riyadh 11393 Saudi Arabia</td>
</tr>
<tr>
<td>Tel.: 00966 1 4654488 – 4643150</td>
</tr>
<tr>
<td>Fax. 00966 1 4658560</td>
</tr>
<tr>
<td>Mobile: 00966 50 3419791</td>
</tr>
<tr>
<td>E-mail: droszman@gmail.com</td>
</tr>
<tr>
<td>www.tu.com.sa</td>
</tr>
<tr>
<td>North America IEC Admissions</td>
</tr>
<tr>
<td>Masood Basha Lateef - Regional Director</td>
</tr>
<tr>
<td>city: Jeddah - Riyadh - Chennai</td>
</tr>
<tr>
<td>28 Zahran Tower 5th Floor North of Moraba Bridge - Al Madinah Road</td>
</tr>
<tr>
<td>phone number: 00966126821285</td>
</tr>
<tr>
<td>E-mail: na.admissions@iecabroad.com</td>
</tr>
<tr>
<td>Syria and Middle East</td>
</tr>
<tr>
<td>Eng. Ghassan Chantis</td>
</tr>
<tr>
<td>GCCE Director</td>
</tr>
<tr>
<td>E-mail: chanisg50@hotmail.com</td>
</tr>
<tr>
<td>Syria: Damascus-Abasia Sqr. 3</td>
</tr>
<tr>
<td>Tel.: Damascus: +963114455786</td>
</tr>
<tr>
<td>Budapest: +36705483362</td>
</tr>
<tr>
<td>Turkey</td>
</tr>
<tr>
<td>MEDA</td>
</tr>
<tr>
<td>STUDY ABROAD COUNSELLING</td>
</tr>
<tr>
<td>Ayse Ayan - Counsellor</td>
</tr>
<tr>
<td>MACARISTAN ve YURTDISI EGITIM DANISMANLIGI</td>
</tr>
<tr>
<td>Buyukdere Cad. No:182 D:16 Yeni Levent</td>
</tr>
<tr>
<td>Besiktas 34330 Istanbul - Turkey</td>
</tr>
<tr>
<td>Tlf: +90.212.270 64 19 (20) GSM: +90.532.690 33 39</td>
</tr>
<tr>
<td>Skype: ayse.ayan</td>
</tr>
<tr>
<td>E-mail: ayse.ayan@medaegitim.com, www.medaegitim.com</td>
</tr>
<tr>
<td>YEKS MEDA EGITIM DANISMANLIK TURIZM DANISMANLIK GIDA SAN DIS TIC LTD</td>
</tr>
<tr>
<td>Yelis ESTAS</td>
</tr>
<tr>
<td>Buyukdere Cad. No: 182 Kat 4 D 16, 34 330 Istanbul</td>
</tr>
<tr>
<td>phone number: 00 90 212 270 64 20</td>
</tr>
<tr>
<td>Can Akademi</td>
</tr>
<tr>
<td>Sayil Gunay</td>
</tr>
<tr>
<td>Istanbul & Kocaeli</td>
</tr>
<tr>
<td>Sahkulu Mh. Serdar-i Ekrem Sok. No:15/A, Galata 1</td>
</tr>
<tr>
<td>Istanbul</td>
</tr>
<tr>
<td>postal code: 34421</td>
</tr>
<tr>
<td>phone number: +905533130773</td>
</tr>
</tbody>
</table>
Hun Education Kft. (HUNEDU)
Ejder Yücel Manager
H-2000 Szentendre, Bem u. 2., Hungary

Uganda
Overseas Educational Services
Solomon Edward Semanda
Plot 17 Mpanga Close off Luthuli Avenue Bugolobi
0256 Kampala
phone number: +256(0)752629482

United Arab Emirates
Blis Trading and Investment Co. Ltd.
Hassam El Tayeb Ali
P.O.Box 11662 Khartoum, Sudan
hassan_blais@yahoo.com

Univer360 FZ LLC
Mr. Ghassan El Rifai
Corniche Al Khan, Sondos Tower 3303
Sharjah 2207, United Arab Emirates
Phone number: +971 50 4810101; +971 50 2223564
Email: info@univer360.com; univer@emirates.net.ae
The Faculty of Architecture at the Budapest University of Technology and Economics focuses on training highly professional experts in architectural engineering who are aware of the social and cultural implications of their profession. Versatility is emphasised so that students will gain fundamental knowledge and abilities in every possible field of architecture and be able to find work in a highly competitive job market, and in any building- or design-related area of consulting, construction, and management. The 5-year program in English leads directly to an MSc degree in Architecture and Architectural Engineering (Dipl. Ing. Arch.), but it is also possible to graduate as a Bachelor of Science in Architecture.

Graduates of the Faculty of Architecture are qualified for a broad spectrum of architectural occupations:

- Design, construction and maintenance of residential, public, industrial and agricultural buildings;
- Reconstruction and the preservation of historical monuments;
- Urban design and settlement planning; and
- Administration of all these activities.

The curricula were organised on Swiss and German models. The Faculty has maintained these traditions for the last 40 years but provides additional European and international dimensions through guest lecturers from abroad, topical short courses, workshop seminars and exchange programs.

The five year program of the Faculty of Architecture taught in English is in full conformity with the five-year program provided in Hungarian, which after two years practice and experience is accepted for access to EUR-ING title.

General course – Preparatory Course

The year program in English, called the General Course precedes the Degree Program. It is designed to develop the skills of students from abroad so they will be at no disadvantage in meeting the Faculty’s exacting educational standards. Students are introduced to various aspects of the profession they have selected, and they concentrate on studying English and basic technical subjects such as mathematics and freehand drawing. Students who show enough skills at the Placement Test can automatically (immediately) start the Degree Program.

Academic Program of the Faculty of Architecture: BSc/MSc Studies

The two-level B.Sc, M.Sc training in the English speaking section of the Faculty of Architecture is realized in a split-up system, in full conformity with the Hungarian speaking section. For B.Sc degree students have to accumulate min 240 credit points, for M.Sc degree min 300 credit points by accomplishing the obligatory subjects and gathering the remaining credit points by accomplishing elective subjects too. B.Sc degree can be obtained in a minimum of four years, M.Sc degree in a minimum of five years of study.

Students, both international and Hungarian, who have a command of both languages can choose from either program. The participation of Hungarian students in the program given in English has obvious advantages. It eases the integration of international students into the society, which surrounds them during the years of their studies. It also attracts students from European, American and other universities worldwide to study in Budapest within the framework of the International Student Exchange Program and other agreements.

Hungarian students likewise gain the opportunity to study at schools of architecture abroad. These exchanges will become a powerful factor in achieving real convertibility among educational systems worldwide and, eventually, mutual international recognition of degrees.
Master’s Program

Students who have earned BSc degrees in other schools of architecture can join the Master’s Program. Programs will be tailored to their previous education and special needs. In general they are admitted to the last two years of the five years program, and they have to collect minimum 120 credits. These studies encompass a wide range of complex design topics and elective subjects grouped in three directions:

- Structural Design - buildings and other structures.
- Architectural Design - buildings with different functions, their interiors and surroundings; the preservation of historical buildings.
- Town Planning - urban design, settlement planning and management.

Note: The Faculty of Architecture reserves the right of changing the Curricula.

Graduation

Graduation from the University is based on the successful completion of examinations in all subjects and on the successful defence of a diploma project before a Final Examination Board. The examinations are public and the Board consists of professors and eminent specialists in the profession. Diploma projects are prepared in the last semester under departmental guidance and can be submitted only by students with an “absolutorium” (university leaving certificate). The diploma project is expected to reflect its author’s familiarity with technical and aesthetic knowledge fundamental to architectural practice, and his/her creativity in applying it. Currently, international agreements make it possible for certain Hungarian students to prepare and defend their diploma projects in the university of another country. Students from abroad can correspondingly prepare and defend their thesis projects under the guidance of the Faculty of Architecture at the Budapest University of Technology and Economics.

Departments

- Department of Construction Technology and Management
- Department of Architectural Representation
- Department for History of Architecture and of Monuments
- Department of Building Energetics and Building Services
 - Laboratory of Thermal Physics
- Department of Building Constructions
 - Laboratory of Building Acoustics
- Department of Industrial and Agricultural Building Design
- Department of Public Building Design
- Department of Residential Buildings
- Department of Design
- Department of Mechanics, Materials and Structures
- Department of Urban Studies
General (Preparatory) Courses in Architecture

<table>
<thead>
<tr>
<th>Subject</th>
<th>Name</th>
<th>Code</th>
<th>Credits</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>Requisities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Mathematics 1</td>
<td>BMETETOPB22</td>
<td>- 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer Literacy 1</td>
<td>BMEEPAGG101</td>
<td>- 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Sciences</td>
<td>BMETETOP117</td>
<td>- 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geometrical Construction 1</td>
<td>BMEEPAGG111</td>
<td>- 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freehand Drawing 1</td>
<td>BMEEPRAJ01</td>
<td>- 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design Skills 1</td>
<td>BMEEPRAJ111</td>
<td>- 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Mathematics 2</td>
<td>BMETETOPB23</td>
<td>- 5</td>
<td>Basic Mathematics 1a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer Literacy 2</td>
<td>BMEEPAGG201</td>
<td>- 2</td>
<td>Computer Literacy 1a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geometrical Constructions 2</td>
<td>BMEEPAGG211</td>
<td>- 3</td>
<td>Geometrical Constructions 1a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freehand Drawing 2</td>
<td>BMEEPRAJ201</td>
<td>- 6</td>
<td>Freehand Drawing 1a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamental of Structures</td>
<td>BMEEPSTA201</td>
<td>- 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Tools of Building Constructions</td>
<td>BMEEPESG201</td>
<td>- 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design Skills 2</td>
<td>BMEEPRAJ211</td>
<td>- 2</td>
<td>Freehand Drawing 1a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamental of Architectural Design</td>
<td>BMEEPRAJ221</td>
<td>- 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compulsory English for Pre-Eng. Students I</td>
<td>BMETG63A201</td>
<td>- 0/6/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compulsory English for Pre-Eng. Students II</td>
<td>BMETG63A202</td>
<td>- 0/6/0</td>
<td>BMETG63A201a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) can be taken parallelly in the same semester. For students of BME Faculty of Architecture only criteria subjects (no credit points)

Students can enter the BSc/MSc degree program only after completing all the subjects of the second semester of General Courses in Architecture.

Curriculum of BSc/MSc Subjects

<table>
<thead>
<tr>
<th>Subject</th>
<th>Name</th>
<th>Code</th>
<th>Credits</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>Requisities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics 1</td>
<td>BMETE90AX33</td>
<td>4 2/2/0e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Philosophy</td>
<td>BMETG411099</td>
<td>2 2/0/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Descriptive Geometry 1</td>
<td>BMEEPAGA102</td>
<td>5 3/2/0e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Building construction</td>
<td>BMEEPESA101</td>
<td>2 2/0/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>History of Architecture I, (The Beginnings)</td>
<td>BMEEPETA101</td>
<td>2 2/1/0e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Structural Design</td>
<td>BMEEPSTA101</td>
<td>2 2/0/0e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drawing 1</td>
<td>BMEEPRAA101</td>
<td>5 0/5/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Architecture</td>
<td>BMEEPUJA101</td>
<td>2 2/0/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space Composition</td>
<td>BMEEKPOA101</td>
<td>5 0/5/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics 2</td>
<td>BMETE90AX34</td>
<td>2 0/2/0</td>
<td>BMETE90AX33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Descriptive Geometry 2</td>
<td>BMEEPAGA202</td>
<td>5 3/2/0e</td>
<td>BMEEPAGA102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building Constructions 1</td>
<td>BMEEPESA201</td>
<td>4 2/2/0e</td>
<td>BMEEPESA101, BMEEPSTA101s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statics</td>
<td>BMEEPSTA201</td>
<td>4 2/2/0e</td>
<td>BMEEPSTA101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>History of Architecture 2, (Antiquity)</td>
<td>BMEEPSTA201</td>
<td>3 2/1/0e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drawing 2</td>
<td>BMEEPRAA201</td>
<td>4 0/4/0</td>
<td>BMEEPRAA101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residential Building Design 1</td>
<td>BMEEPLAA201</td>
<td>2 2/0/0e</td>
<td>BMEEPRAA101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basics of Architecture</td>
<td>BMEEPLAA202</td>
<td>6 0/6/0</td>
<td>BMEEPRAA101, BMEEPLAA201, BMEEPLAA202</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building Materials 1</td>
<td>BMEEPLAA301</td>
<td>3 2/1/0p</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Architectural Informatics 1 - IT Applications</td>
<td>BMEEPLAA302</td>
<td>2 1/1/0p</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building Physics</td>
<td>BMEEPAGA301</td>
<td>2 2/0/0</td>
<td>BMEEPAGA101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strength of Materials 1</td>
<td>BMEEPSTA201</td>
<td>4 2/2/0e</td>
<td>BMEEPSTA101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>History of Architecture 3, (Medieval)</td>
<td>BMEEPSTA301</td>
<td>3 2/1/0e</td>
<td>BMEEPSTA201</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drawing 3</td>
<td>BMEEPRAA301</td>
<td>4 0/4/0p</td>
<td>BMEEPRAA201</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Building Design 1</td>
<td>BMEEPKOA301</td>
<td>2 2/0/0</td>
<td>BMEEPRAA201, BMEEPLAA202</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residential Building Design 2</td>
<td>BMEEPLAA301</td>
<td>6 0/6/0</td>
<td>BMEEPRAA201, BMEEPLAA202, BMEEPLAA201</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building Constructions 2</td>
<td>BMEEPAGA301</td>
<td>4 2/2/0e</td>
<td>BMEEPAGA101, BMEEPAGA102s, BMEEPLAA201</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subject</td>
<td>Name</td>
<td>Code</td>
<td>Credits</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>Requisities</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>------</td>
<td>---------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>Sociology for Architects</td>
<td>BMECT43A044</td>
<td>2</td>
<td>2/0/0e</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Architectural Inf. 2 - Digital Representation</td>
<td>BMEEPAGA401</td>
<td>3</td>
<td>1/2/0p</td>
<td>BMEEPAGA202, BMEEPAGA301</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building Constructions 3</td>
<td>BMEEPESA401</td>
<td>4</td>
<td>2/2/0e</td>
<td>BMEEPESA201</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strength of Materials 2</td>
<td>BMEEPSTA401</td>
<td>6</td>
<td>4/2/0p</td>
<td>BMEETE90AX34, BMEEPSTA301</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strength of Materials Global</td>
<td>BMEEPSTA499</td>
<td>-</td>
<td></td>
<td></td>
<td>BMEEPSTA401a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>History of Architecture 4</td>
<td>BMEEPETA401</td>
<td>3</td>
<td>2/1/0e</td>
<td>BMEEPETA301</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drawing 4</td>
<td>BMEEPRAA401</td>
<td>2</td>
<td>0/2/0p</td>
<td>BMEEPRAA301</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design Methodology</td>
<td>BMEEPKOA402</td>
<td>2</td>
<td>2/0/0e</td>
<td>BMEEPKOA301, BMEEPKOA301</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Architecture of Workplaces 1</td>
<td>BMEEPAPA401</td>
<td>2</td>
<td>2/0/0e</td>
<td>BMEEPKOA301, BMEEPKOA301</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Building Design 2</td>
<td>BMEEPKOA401</td>
<td>6</td>
<td>0/6/0p</td>
<td>BMEEPKOA301, BMEEPKOA301</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Architectural Inf. 3 - CAAD for Architects</td>
<td>BMEEPAGA501</td>
<td>3</td>
<td>1/2/0p</td>
<td>BMEEPAGA401, BMEEPKOA301, BMEEPKOA301</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction Man. 1 - Basics of Construction</td>
<td>BMEEPKOA501</td>
<td>2</td>
<td>2/0/0p</td>
<td>BMEEPKOA301</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building Service Engineering 1</td>
<td>BMEEPAGA501</td>
<td>2</td>
<td>2/0/0p</td>
<td>BMEEPKOA301, BMEEPKOA301</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building Constructions 4</td>
<td>BMEEPAGA501</td>
<td>4</td>
<td>2/0/0e</td>
<td>BMEEPKOA301, BMEEPKOA301</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global of Building Constructions Basic</td>
<td>BMEEPKOA599</td>
<td>-</td>
<td></td>
<td>BMEEPKOA202, BMEEPKOA499, BMEEPKOA401</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design of Load-Bearing Structures</td>
<td>BMEEPKOA501</td>
<td>6</td>
<td>4/2/0e</td>
<td>BMEEPKOA301, BMEEPKOA401</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>History of Architecture 5 (19th century)</td>
<td>BMEEPKOA501</td>
<td>3</td>
<td>2/1/0p</td>
<td>BMEEPKOA301, BMEEPKOA401</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drawing 5</td>
<td>BMEEPKOA501</td>
<td>2</td>
<td>0/2/0p</td>
<td>BMEEPKOA401</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban Design 1</td>
<td>BMEEPKOA501</td>
<td>2</td>
<td>2/0/0e</td>
<td>BMEEPKOA401</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Architecture of Workplaces 2</td>
<td>BMEEPKOA501</td>
<td>6</td>
<td>0/6/0p</td>
<td>BMEEPKOA501, BMEEPKOA401</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design Global Basic</td>
<td>BMEEPKOA599</td>
<td>-</td>
<td></td>
<td>BMEEPKOA401a, BMEEPKOA401, BMEEPKOA402</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economics 1. (Microeconomics)</td>
<td>BMECT301004</td>
<td>2</td>
<td>2/0/0p</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction Management 2 * (Building Project Management)</td>
<td>BMEEPKOA501</td>
<td>2</td>
<td>2/0/0e</td>
<td>BMEEPKOA501</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction Management 2 ** (Building Project Management)</td>
<td>BMEEPKOA501</td>
<td>4</td>
<td>2/2/0e</td>
<td>BMEEPKOA501</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building Service Engineering 2</td>
<td>BMEEPKOA501</td>
<td>2</td>
<td>2/0/0e</td>
<td>BMEEPKOA501</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building Constructions 5</td>
<td>BMEEPKOA501</td>
<td>4</td>
<td>2/2/0e</td>
<td>BMEEPKOA301, BMEEPKOA401</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preservation of Historic Monuments *</td>
<td>BMEEPKOA501</td>
<td>2</td>
<td>2/0/0e</td>
<td>BMEEPKOA301, BMEEPKOA401</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>History of Architecture 6 *</td>
<td>BMEEPKOA501</td>
<td>3</td>
<td>2/1/0p</td>
<td>BMEEPKOA301, BMEEPKOA401</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drawing 6</td>
<td>BMEEPKOA501</td>
<td>3</td>
<td>0/2/0p</td>
<td>BMEEPKOA401</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department's Design 1 *</td>
<td>BMEEPKOA501</td>
<td>6</td>
<td>0/6/0p</td>
<td>BMEEPKOA401</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban Design 2</td>
<td>BMEEPKOA501</td>
<td>6</td>
<td>0/6/0p</td>
<td>BMEEPKOA401</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Load-Bearing Structures *</td>
<td>BMEEPKOA501</td>
<td>4</td>
<td>2/2/0e</td>
<td>BMEEPKOA301</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building Materials 2 **</td>
<td>BMEEPKOA501</td>
<td>3</td>
<td>2/1/0p</td>
<td>BMEEPKOA301, BMEEPKOA501</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>History of Architecture Global (Basic)</td>
<td>BMEEPKOA501</td>
<td>2</td>
<td>2/0/0e</td>
<td>BMEEPKOA401</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reinforced Concrete Structures I **</td>
<td>BMEEPKOA501</td>
<td>6</td>
<td>4/2/0e</td>
<td>BMEEPKOA501</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economics 2. (Macroeconomics)</td>
<td>BMECT301004</td>
<td>2</td>
<td>0/2/0p</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction Management 3 (Planning of Construction Technology)</td>
<td>BMEEPKOA501</td>
<td>4</td>
<td>2/0/0p</td>
<td>BMEEPKOA501</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building Constructions 6</td>
<td>BMEEPKOA501</td>
<td>4</td>
<td>2/0/0e</td>
<td>BMEEPKOA501</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steel and Timber Structures **</td>
<td>BMEEPKOA501</td>
<td>4</td>
<td>4/0/0e</td>
<td>BMEEPKOA301</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>History of Art 1 *</td>
<td>BMEEPKOA501</td>
<td>2</td>
<td>2/0/0e</td>
<td>BMEEPKOA501</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drawing 7 *</td>
<td>BMEEPKOA501</td>
<td>2</td>
<td>0/2/0e</td>
<td>BMEEPKOA301, BMEEPKOA501</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department's Design 2 *</td>
<td>BMEEPKOA501</td>
<td>3</td>
<td>0/3/0p</td>
<td>BMEEPKOA301, BMEEPKOA401</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department design 3.*</td>
<td>BMEEPKOA501</td>
<td>3</td>
<td>0/3/0p</td>
<td>BMEEPKOA401, BMEEPKOA501</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global In Structures *</td>
<td>BMEEPKOA501</td>
<td>2</td>
<td>2/0/0e</td>
<td>BMEEPKOA401</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>History of Hungarian Architecture **</td>
<td>BMEEPKOA501</td>
<td>2</td>
<td>2/0/0e</td>
<td>BMEEPKOA301</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil Mechanics **</td>
<td>BMEEPKOA501</td>
<td>2</td>
<td>2/0/0e</td>
<td>BMEEPKOA301</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSc Diploma Studio 1 **</td>
<td>BMEEPKOA501</td>
<td>6</td>
<td>0/6/0p</td>
<td>BMEEPKOA401, BMEEPKOA401, BMEEPKOA402</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** BMEEPKOA501a, BMEEPKOA401, BMEEPKOA402 **
Curriculum of BSc/MSc Subjects (contd.)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Name</th>
<th>Code</th>
<th>Credits</th>
<th>Hours/week</th>
<th>Requisities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Building and Architectural Economics</td>
<td>BMEEPKA801</td>
<td>2</td>
<td>2/0/0p</td>
<td>BMEEPKA701, BMEEPKA901, BMEEPKA501</td>
</tr>
<tr>
<td></td>
<td>Facility Management *</td>
<td>BMEEPKO633</td>
<td>2</td>
<td>2/0/0e</td>
<td></td>
</tr>
<tr>
<td></td>
<td>History of Hungarian Architecture 1. *</td>
<td>BMEEPETOB01</td>
<td>2</td>
<td>2/0/0p</td>
<td>BMEEPKO501, BMEEPET501, BMEEPKO401</td>
</tr>
<tr>
<td></td>
<td>Drawing 8 *</td>
<td>BMEEPRA0801</td>
<td>2</td>
<td>0/2/0p</td>
<td>BMEEPRA501, BMEEPKO501, BMEEPKO401</td>
</tr>
<tr>
<td></td>
<td>Urbanism *</td>
<td>BMEEPPLA0805</td>
<td>2</td>
<td>2/0/0p</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contemporary Arch. Offices *</td>
<td>BMEEPPO0893</td>
<td>2</td>
<td>0/2/0p</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Res. Design and Cont. Competitions*</td>
<td>BMEEPLO0897</td>
<td>2</td>
<td>2/0/0e</td>
<td>BMEEPPLA301</td>
</tr>
<tr>
<td></td>
<td>Complex Design 1 *</td>
<td>BMEEPxxT811</td>
<td>10</td>
<td>0/10/0p</td>
<td>BMEEPxxT711, BMEEPST401, BMEEPKO501, BMEEPKO401</td>
</tr>
<tr>
<td></td>
<td>Building Construction Global *</td>
<td>BMEEPET899</td>
<td>4</td>
<td>2/0/0p</td>
<td>BMEEPET501, BMEEPKO501, BMEEPKO401</td>
</tr>
<tr>
<td></td>
<td>Construction Management 4, **</td>
<td>BMEEPK701</td>
<td>2</td>
<td>2/0/0e</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Building Constructions 7 **</td>
<td>BMEEPK801</td>
<td>4</td>
<td>2/0/0e</td>
<td>BMEEPET501, BMEEPKO501, BMEEPKO401</td>
</tr>
<tr>
<td></td>
<td>BSc Diploma 2**</td>
<td>BMEEPxxBD01</td>
<td>12</td>
<td>0/12/0p</td>
<td>All the subjects and globals of previous semesters</td>
</tr>
<tr>
<td></td>
<td>Construction Law *, **</td>
<td>BMEEPKO901</td>
<td>2</td>
<td>2/0/0p</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Design of Reinforced Concrete structures*</td>
<td>BMEEPST0655</td>
<td>2</td>
<td>2/0/0e</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drawing 9 *</td>
<td>BMEEPRA901</td>
<td>2</td>
<td>0/2/0p</td>
<td>BMEEPRA501, BMEEPKO501, BMEEPKO401</td>
</tr>
<tr>
<td></td>
<td>The Form in Architecture 2 *</td>
<td>BMEEPRA0402</td>
<td>2</td>
<td>0/2/0p</td>
<td></td>
</tr>
<tr>
<td></td>
<td>History of Theory of Architecture 1.*</td>
<td>BMEEPET0407</td>
<td>2</td>
<td>2/0/0e</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Complex Design 2 *</td>
<td>BMEEPxxT911</td>
<td>10</td>
<td>0/10/0p</td>
<td>BMEEPxxT711, BMEEPKA701, BMEEPKA501, BMEEPKA401</td>
</tr>
<tr>
<td></td>
<td>Theory of Architecture Design *</td>
<td>BMEEPET0921</td>
<td>2</td>
<td>2/0/0p</td>
<td>BMEEPKO501, BMEEPKO401</td>
</tr>
<tr>
<td></td>
<td>Contemporary Hungarian Architecture 2, *</td>
<td>BMEEPET0901</td>
<td>2</td>
<td>2/0/0p</td>
<td>BMEEPKA501, BMEEPKO601</td>
</tr>
<tr>
<td></td>
<td>History of Architecture Global *</td>
<td>BMEEPETT999</td>
<td>2</td>
<td>2/0/0p</td>
<td>BMEEPET0601, BMEEPET801, BMEEPET901</td>
</tr>
<tr>
<td></td>
<td>Diploma project studio *</td>
<td>BMEEPxxTD01</td>
<td>30</td>
<td>0/30/0e</td>
<td></td>
</tr>
</tbody>
</table>

*a) can be taken parallelly in the same semester
b) signature only
*: Obligatory for MSc / Elective for B. Sc. Degree
**: Obligatory for B. Sc. / Elective for M. Sc. Degree

Minimum number of credits for B. Sc. Degree: 240
Minimum number of credits for M. Sc. Degree: 300
Design skills 1.

Mr. Gábor Nemes
The Basic formal components of Buildings: walls, beams, pillars, floors. Their appearance and formal varieties. The Basics of spatial compositions. The idea of the architectural space and its typology.

Design skills 2.

Mr. Gábor Nemes
Developing the skills of students to read 2D architectural drawings. To develop skills to transfer 2D drawings to 3D expression. To develop skills to transform the 3D reality into 2D projection drawings.

Freehand Drawing 1-2.

DLA Balázs Balogh, Dr. Balázs Méhes
Introduction to the basic laws of perspective, the one-level point perspective, cubes and squares; simple body settings, cylindrical bodies, towers viewed from the ground, half-cylindrical rings, and more complicated settings and orthogonal pictures. Life drawing, shadow techniques, curved surfaces and rounded bodies. Tonal drills, draperies, plaster ornaments, flowers in ink, still life (plasters), coloured pencil techniques, aquarell and still-life interiors. Interiors and furniture, corridors, staircases, corridors or exteriors (weather permitting). (Criteria subject)

Fundamentals of Architectural Design 4

DLA Balázs Balogh
It is an attempt to explain the grammar of architectural design, to describe the basic factors on which the creative process of design depends. The course intends to give students a clear picture of the profession of architecture as they start their training and to give them some guidance on the attitude of mind that will help them in their approach to design problems. (Criteria subject)

Basic Tools of Building Constructions

Dr. Fülöp Zsuzsanna, Dr. Igaz György
Construction is the realization of architecture. Building construction classes will help students master the control of this realization process, through the learning of academic principles behind practical construction theory. Design must be realized through techniques founded on proper methods and principles of building construction. Course develops a basic understanding of building construction vocabulary, drafting symbolism, various building systems and building components and their interactions. To be able to select appropriate building systems and detail solutions for design tasks.

Computer Literacy 1

Mihály Szoboszlai PhD
General information about computing, computers, and peripheral devices. Input, output and data storage. Methods of problem solving on computers. Algorithms and programs. Basic elements of a programming language, such as symbols, datatypes, statements, control structures and elementary I/O. Practical work on a computer; development and running of small programs. Text editor and translator.

Computer Literacy 2

Mihály Szoboszlai PhD
Introduction to computers, operating systems and computer networks. Browsing and organizing information through Internet, use of Internet based communication. Computers in architectural office: word processing, using spreadsheets, creating presentations. Basics of pixelgraphics and image manipulation.

Geometrical Constructions 1

Pál Ledneczki PhD I

Geometrical Constructions 2

Pál Ledneczki PhD II

Fundamentals of Structures

BMEEPSTA001
Dr András Draskóczy, Dr Gábor Domokos
Introduction: requirements of the built environment. 1st site visit: an existing, functioning building. Parts of buildings. Discussion of experiences of the 1st site visit: functions and requirements of parts of buildings, 2nd site visit: a construction site. Loadbearing parts of buildings. Discussion of experiences of the 2nd site visit: functions and requirements of loadbearing parts of buildings. The notion of safety. 3rd site visit: laboratory testing of structural members (brickwork column, reinforced concrete beam). Loads and responses when being loaded. Discussion of experiences of the 3rd site visit: structural members; ways of becoming unfit for use: rupture, loss of stability (overturning, sliding, buckling), excessive cracking and deformations. 4th site visit: laboratory testing of structural materials. Yield and rupture. Collection of strength measurement data. Discussion of experiences of the 4th site visit: statistical evaluation of measurement data. The notion of safety, safety factors of materials and loads. 5th site visit: a project bureau. Graphical presentations of buildings. Architecture and structure. Results of structural analysis. Discussion of experiences of the 5th site visit: Parts and kinds of documentation. Scales and graphical symbols. Modelling of structures, structural projects. 6th site visit: ready structure construction site. Discussion of experiences of the 5th site visit: modelling of structures. The static model.
The course gives an overview of the history of architecture in the first period of the evolution of human culture. The classes follow chronology — mainly in the first part of the course — with a focus, on the development of building constructions and the development of settlements.

The practical lessons show details were delivered in the lecture before. The drawings drawn by students help them to understand the colorful world of common and rural architecture. (3 credits)

Introduction to Structural Design

BMEEPSTA101

The most important methods of analysis and design of engineering structures are presented, together with their modeling, and the applied approximations. It is shown how high school statics (and math) can be applied to engineering structures. The understanding of the behavior of structures is emphasized. (2 credits)

Drawing and Composition 1

BMEERPAA101

The objective of this subject is to introduce students to the fundamentals of perspective spatial representation based on geometrical solids (e.g. cube, cylinder, quadratic and triangular prisms.) In the course of the semester, drawing tasks range from simple arrangements to complex spatial constructions, while representation techniques range from constructive line drawing to tinted drawing (showing light-shadows effects), applying lead pencil. (2 credits)

Introduction to Architecture

BMEEPUIA101

The subject intends to raise and maintain first-year students’ professional interest and give a common architectural language preparing for further special courses. This subject intends to make students’ attitude positive towards architecture; enlarge their intellectual capacities and get them understand the many-sided learning processes of architecture: lectures, texts, project analyses, films etc. (2 credits)

Space Composition

BMEEPKOA101

Space composition is the creative course of the first semester, during which the students study the basics of the composition of (architectural) space. The aim of the course on one hand is to develop one’s creativity, on the other hand getting a deeper knowledge about the nature of creating architectural space through space-composition exercises. This knowledge will be the basis of the process of architectural design in the forthcoming semesters. (5 credits)

Mathematics 2

BMETE90AX34

Descriptive Geometry 2
BMEEPAGA202
Curved lines and surfaces; quadratic surfaces, surfaces of revolution; developable surfaces, screw surfaces, ruled surfaces. Representation in multi-view system, axonometry and perspective. Construction of tangent plane, contour and shadow. Intersection of surface and plane, intersection of a pair of surfaces. Topographic map, projection with elevation, sections, earthworks platform, road, cuts and fills. (5 credits)

Building Constructions 1
BMEEPESA201
This subject presents the details of the main load-bearing constructions (walls, floors, stairs) and the joints between them. Wall supported / skeleton frame, or mixed construction. Walls: Effects on walls, and how to fulfil the requirements. Sorting the walls by function, position, material, by layer-order. Walls built from elements, the development of wall elements. Floors: Functions, effects on floors, how to fulfil the requirements. Elements of floor construction. Types: plain floors (in details), arches (overview). The materials, construction lines, building methods. About the future of floors Joints between walls – floors, skeleton frames – floors. Methodology of the floor design. Stairs: Functions, effects on stairs, how to fulfil the requirements, principles of stressing and how to choose construction. Sorting the constructions by material, load bearing method, building method etc. Design possibilities. (4 credits)

Statics
BMEEPSTAA201
The basic laws and theorems of statics are presented and applied to engineering structures. Statically determinate trusses, beams, frames, and assembled structures are considered, the line of trust is presented. Internal forces are treated in 2D and 3D. (4 credits)

History of Architecture 2 (Antiquity)
BMEEPETAA201

Drawing and Composition 2
BMEEPRAA201
This subject intends to inspire students to think creatively via free-hand drawing tasks. It is closely related to the material covered by preceding semester, however, spatial arrangements are complex, and students are expected to creatively supplement them and apply light-shadow effects. Classes present the basics of the theory of colours and its architectural application. After a creative model building task, students return to the representation of complex spatial forms practised in the previous semester (e.g. furniture, drapery, details of space, drawing studio etc.) to apply and practice a wide range of drawing techniques (e.g. pencil, crayon, ink, washed drawing). (4 credits)

Residential Building Design 1
BMEPLAA201
This class covers the theory and fundamentals of residence building design, which is the same as the fifth-year and BSc training. The time for enrollment is the second semester, and the prerequisite for admission is successful completion of the Introduction to Architecture course. The goal of the class is the mastery of basic knowledge concerning the formation of a dwelling environment, residential building design, and housing topics in general. The lecture series presents the historical and intellectual evolution in housing design – providing information on the historical precedents and intellectual roots for the formation of residential areas and apartment buildings, as well as a special perspective on last century’s trends, which determine design practice to this day. Also presented are expectations (operative or otherwise) for the formation of dwelling areas, apartment arrangement methods, types of residential buildings in use and the specific requirements that apply, lessons of techniques used in professional practice, problems of apartment buildings’ architectural formation and aesthetic appearance, as well as fundamental relationships in housing architecture. Planned lectures will only deal with the exact know-how as necessary, and this knowledge must be acquired through the class textbook (Residential Building Design by Dr. János Bitó). The class concludes with an oral exam, questions being derived in part from the lectures and in part from textbook material. (2 credits)

Basics of Architecture
BMEELAA202
Architectural planning is a creative process, typified mainly by an end result that is either one-of-a-kind in its details or uncommon as a whole. Hence, the design path is unique in and of itself. In the case of design activity, instruction does not only impart basic knowledge of the profession (the mastery and practice of which is a requirement of the design process), but also develops creative skills. The Fundamentals of Architecture class consists of weekly practice; before receiving each assignment, however, there is a general lecture held for all that year’s students. Within the subject, architectural pupils encounter tasks that require architectural-based problem solving and creative trouble-shooting. Classes of 25-28 pupils are run by 3-4 main instructors. In the course of the semester, there are several small planning tasks to be solved, modelling, architectural drawing, and technical drawing with equipment. Design tasks are built around a unifying theme or motto. (6 credits)

Building Materials 1
BMEEOEMAA301
Material properties and classification of building materials (densities, mechanical properties, hydrotechnical properties, thermal properties). Detailed introduction of timber, masonry, mortar, concrete (and constituent materials), metals, polymers, glass used in architecture. Fields of application. Types of commercial products. Material testing methods for building materials (tensile, compressive and bending testing). Observation of basic natural stones and applications. Students work individually or in small groups during the laboratory sessions and study the physical and mechanical properties of building materials. (3 credits)
Strength of Materials 1

History of Architecture 3 (Medieval)

Drawing and Composition 3

This subject introduces students to profesional specific applications of the drawing skills they acquired so far. Classes present drawing methods for the representation of reality irrespective of the given point of view, from any other one. Students learn to consciously apply perspective in drawing small-scale models as tall buildings, and develop various graphic skills by practising the architectual graphic representation of masonry, stone, wooden and glass surfaces and those of materials. A creative modeling task assigned to students is building an autonomous construction, which focuses on the relations of materials and volume, internal space and the phenomenon of transparency. During model building, problems of space, form and structural arrangement are investigated; while at graphic elaboration, great emphasis is laid on the representation of materials, fluency in perspective drawing and abstraction. (4 credits)
Public Building Design 1
BMEEPKA301
Our basis for public building design methodology, the function of public buildings and technical requirements, achieved via a knowledge of architectural history and precedent of type. The course pattern will analyze important examples of Hungarian and International public buildings regarding architectural space, architectural form, the use of materials and structures, in relationship to various environmental factors. (2 credits)

Residential Building Design 2
BMEEPPLA301
This class covers the practice of residential house planning in studio, both for general students and BSc training. Prerequisites are the successful completion of Residence Building Design 1, Fundamentals of Architecture, and Descriptive Geometry 1 courses. Practice takes place once a week in the form of studio classes and consultations. The central elements of the course include the apartment, the main goal being the mastery of a basic knowledge of flats and their practical use, as well as an understanding of relationships between flat and building, building and environment. The flat, as a function of architectural engineering praxis, appears in countless forms. Obviously, we have no means to cover even all the basic cases in one semester – if the concept “teaching” even applies in the case of a creative activity. This is why the class focuses on developing the students’ approach to design work – to develop in students a complex, yet practical standpoint towards spatial arrangement and formation, after they have acquired a thorough knowledge of function. We intend for students, upon completing this class, to be capable of recognizing in all its depths a function – in this case, a flat. Later, in the course of planning, they can make independent, professional decisions on the basis of information they know to be true. That means they can plan good flats with little outside assistance. (6 credits)

Building Constructions 2
BMEEPESA301
The subject deals mainly with pitched roof constructions, roof coverings and different types of foundations – the latter with consideration to waterproofing solutions. During seminar lectures the principles and details of shallow and deep foundations are introduced, according to functional and load bearing requirements of various building constructions as well as subsurface water and soil type effects. Also introduced are the functions and primary principles of different pitched roof constructions such as: traditional roof, rafter type (modern) roof, purlin and truss type roof as well as contemporary methods of carpentry. Further explanation is provided on occupied (built-in) attic constructions with focus on principles, layers, ventilation, windows and lighting. The main types of roof coverings are shown, such as concrete and clay tiles, flashings and metal roof coverings with special attention to principles and details. (4 credits)

Sociology for Architects
BMEGT43A044
Dr. János Farkas, Dr. Adrienne Csizmady

Architectural Informatics 2
BMEEPAGA401
Fundamentals of vector graphics, two-dimensional (2D), and three-dimensional (3D) Computer Aided Design (CAD) systems. Application of Cartesian and polar coordinate systems. CAD principles from simple 2D drafting to the developing of architectural drawings with the use of layers and library elements (blocks). 3D modelling of geometrical shapes and architectural details. (3 credits)

Building Constructions 3
BMEEPSA401
General and detailed review of the structures of the elevation constructions. The most important aim of the subject is the analysis of the external separating constructions. Principles of the continuity of the protecting levels depending on the position in the structure. Multi-layer external separating walls, construction methods of the elevation claddings and elevation coverings, the ordinary and special external doors and windows. Complementary structures for the external doors and windows, especially the shading devices. Requirements for the external separating structures and performances of the different constructions. Building physics: heat and vapour physics, acoustic features of the external separating structures. (4 credits)

Strength of Materials 2
BMEEPSTAA401
Strength of materials is a compulsory engineering subject for second year students in architecture. The goals of the subject are to show how to - determine the deformations of load-bearing structures - find the internal forces of statically indeterminate structures.
In addition to theoretical methods, we also show examples in structural engineering. (6 credits)

History of Architecture 4
BMEEEPAA401

Drawing and Composition 4
BMEEPRAA401
The main topic in the syllabus of the subject is the ‘analytic’ representation of external spaces; students learn how to recognise the invisible geometrical-structural relations below the surface of buildings through preparing ‘X-ray drawings’. Not only the views but also the sections of buildings are studied in order to understand and grasp the gist of the architectural structure behind the view, and to
prepare such 'X-ray drawings' that represent more complex architectural compositions than what the eyes can see. Students prepare drawings on external sites (such as the Museum of Fine Arts, the Great Market Hall, and the assembly halls of BUTE and Corvinus University) to investigate the options of perspective drawing and the versions of plane representation of large spaces. (2 credits)

Design Methodology

BMEEPKO402

Design Methodology deals with theoretical and practical methodology of architectural design flow. The point of theoretical Design Methodology is the design itself as a process that can be modeled. The process of architectural design thus can be compared to an informatics system, so for making the method more clear. Practical Design Methodology is closely connected to the Public Building Design 2 process itself, extending it with special design factors and details. Through analyzing existing buildings and fictional situations interesting practical problems and solutions can be discussed. With the help of invited practicing architects, special methods of new facilities and building reconstructions are presented, along with the design of technologically or structurally determined buildings. Because of its importance, sustainability, free access and ecological design will be touched along whole study. (2 credits)

Architecture of Workplaces 1

BMEEPIPA401

The history of industrial architecture, the history of Hungarian industrial architecture. Load-bearing structures of halls and of multi-storey buildings. Size standardization. Constructions of space separation, facades, subsystems of space separation constructions (foundations, roof structures, intermediate floors, external wall systems, finishes. Characteristic architectural requirements, social facilities. Logistics: transport, storage. From location to layout, emplacement of industrial plants. Design methodology, re-use, reconstruction. Administrative workplaces. (2 credits)

Public Building Design 2

BMEEPKO401

Target of the exercise, how to realize the general architectural design of a public building without loss of focus regarding the types collective characteristic. What does the studio hope to achieve? The architectural design of a smaller public building, with assistance from architect consultants. The student should learn the process from within regarding the architectural design process and the unusual stress placed upon development of space / manipulation of form whilst considering their approach to solving real environmental problems. Communication of this architectural design is the key to making a successful presentation and your ideas should encompass dialogue with client (class tutors), relationship to the surrounding environment both built and natural, understanding of trends, financial awareness and understanding of intellectual property. It is expected that this work will involve a deeper research into project types and location - site visits, photographs, topographical mapping and land use mapping. (6 credits)

Architectural Informatics 3

BMEEPAGA501

Use of state-of-the-art CAAD software to develop professional architectural solutions. Extensive use of 3-D computer model development. Architectural documentation with computers. Computer animation and fly-through pictures for architectural space analysis. (3 credits)

Construction Management 1

BMEEPeka501

The goal of the subject is to present basic information on the technologies and organization of construction work, with special respect on construction activities of sub and superstructures. Considering the character of the subject both theoretical and practical knowledge is essential, therefore besides the lectures the site visits play emphasized role as well. Main topics: The construction process. Phases and participants of the construction process (roles, responsibilities, connections, etc.). Technical preparation and controlling of the construction. Handover – take-over of the building (reviewing the constructions – quality and quantity – and the plans) Introduction to construction technologies, conditions, requirements. Aspects of selecting the technology. Sequence of construction works (the follow-up of processes). Main equipment of construction (earthwork, foundation work, construction of loadbearing structures, etc.) Material supply on site – to the site. Informations about the construction site. Construction site planning. Time scheduling. Types, realations. List of operations, survey for quantities, labour schedule, plant schedule, material schedule. (2 credits)

Building Service Engineering 1

BMEEPEGA501

Water supply

Artificial lighting

Building Constructions 4
BMEEPSA501

Flat roofs. Classification, general design aspects, basic construction principles (inclination and geometry of the water collecting areas) according to the impacts on the roofs. Arrangement of roofing layers. Requirements concerning to the different constructions, layers, materials, building physics. Waterproofing (membranes, coatings), applied materials and their features. Technologies and details. Tracking type and terrace roofs, green roofs. Flooring. Effects and requirements. Layers, subsystems, acoustical evaluation. Substructures of floor coverings and their technical features. Classification according to the materials, specifications. Waterproofing against domestic and industrial wet effects. Drywalls, suspended ceilings, internal wall coverings. Labelling systems, design aspects, effects, requirements, basic structural principles. Internal separating structures of residential buildings satisfying acoustical requirements, connecting details of slabs, floorings and stairs. Principles of primary building engineering service systems and building constructions of sanitary block. (4 credits)

Design of Load-Bearing Structures
BMEEPSTA501

Basic conceptual and computational design methods of load-bearing structures are discussed for reinforced concrete-, steel-, timber and masonry buildings. The main goal is to gain knowledge about structural design problems and principles of structural design in order to understand how and why the load-bearing structure influences the work of an architect. (6 credits)

History of Architecture 5 (19th century)
BMEEPET5A01

The period of this History of Architecture subject is the “long nineteenth century” from the 1750s to the 1910s. In this era the architecture and the art turned to the past, to the previous styles using them in a new approach. The architects had discovered the history of art and artistic liberty at the same time. At the turn of the 20th century the art and also the architecture searched for new ways instead of using historical architectural elements or motifs. The changes led to the Modern Movement when buildings were being erected without decoration or ornaments in the first quarter of the 20th century. This period was divided into different eras, but these types of periodization were different in different countries and changed in the course of the 20th century. Beside the question of styles 19th century is important not only because of the appearing of new structures and materials in the architecture but because of the great development in the field of the functional planning. While following the timeline, the classes concentrate on the development of the styles in several areas of Europe (Great Britain, France, Germany, Russia) looking out to the United States of America too, because there the styles reflected the European ones. (3 credits)

Drawing and Composition 5
BMEEPRA5A01

In this semester students apply their previously acquired skills in the most complex architectural representation: in drawing after imagination. After practising the representation of reality and preparing creative perspective drawings (with the help of the real view, which could not be drawn from real points of view), students in this course prepare fully detailed, external and internal perspective views of buildings of various size, based on plans (e.g. ground plans, sections, elevations), using their experience and creative imagination, applying conventional graphic techniques. Students have to accomplish a modelling task during the semester, which improves creative thinking. (2 credits)

Urban Design 1
BMEEPUIA501

The subject is the theoretical course of the fifth semester, with 2 hours lecture weekly. The task of the course is to introduce students to the theoretical background of Urban Planning and Design with specially focusing on the knowledge and skills necessary for the successful participation in the Design courses later on in the curriculum. The course deals with the historical background, fundamental theories, basic typologies, most wide spread forms and basic sustainability aspects of urban design and planning. (2 credits)

Architecture of Workplaces 2
BMEEPIPA501

In an advanced society the world of labour is synonymous with order and being well-arranged. The aim of this one-semester course is to acquaint students with this world that not only suggests but also requires a lot of organizing and planning. The complexity of the topic manifests itself in the buildings designed to house certain activities with the attached architectural content such as space, stucture, and fabric as well as in the questions regarding the architectural formation of the surroundings by this world. As Architecture of Workplaces 2. is the main designing course in the fifth semester, it has a significant position and task among the Bsc courses. It gives a chance to summarize the acquired architectural-technical knowledge at the midpoint of the education in the form of a last challenge right before the Global Design exam. This complex challenge foreshadows the desire of a real and complicated architectural thinking since it aims to create an equilibrium between the aesthetic and technical constituents of planning of a building. This task of the semester is an organic part of the students’ studies and is designed to be a realistic challenge for them regarding their age and level of professional knowledge. The task involves real architectural programs that contain building sites that are based on actual spots, thus the plans are ought to be highly commensurable resulting in a fair and matter-of-fact grading. (6 credits)

Economics 1. (Microeconomics)
BMEGT301004

Objectives and description of the course: The aim is to allow students to understand today’s economic environment. After having finished the course, students should understand the key concepts of microeconomics (e.g. opportunity cost, supply and demand, market equilibrium, prices, cost functions, profit, competition and monopoly), master a basic set of tools of economic analysis and demonstrate the ability to apply them to simple practical problems. This course is
Construction Management.2 *(Building Project Management)

BMEEPET601

The subject introduces the investment process from emerging the idea through tendering until the hand-over and use. It shows the role and tasks of an architect in different phases of a construction process. It gives an introduction of real estate investment, basics of project management. The relationship between costs, time and quality: scheduling, planning and estimating and the procurement methods are revealed. There are case studies in the field of construction projects, their preparation and performance, planning, organising leading and commanding of works.

Main topics: Building project management; Participants of the construction; Start-up of the construction project - architectural competition; Tendering and contracting; Scheduling, networks; Cost estimation; Post occupancy evaluation (2 credits)

Construction Management.2 ***(Building Project Management)

BMEEPK601

The subject introduces the investment process from emerging the idea through tendering until the hand-over and use. It shows the role and tasks of an architect in different phases of a construction process. It gives an introduction of real estate investment, basics of project management. The relationship between costs, time and quality: scheduling, planning and estimating and the procurement methods are revealed. There are case studies in the field of construction projects, their preparation and performance, planning, organising leading and commanding of works.

Main topics: Building project management; Participants of the construction; Start-up of the construction project - architectural competition; Tendering and contracting; Scheduling, networks; Cost estimation; Post occupancy evaluation (4 credits)

Building Service Engineering 2

BMEEPAG601

Building Constructions 5

BMEEGPSA602

This subject introduces the students to the precast reinforced concrete, steel and the timber load bearing construction systems of the big span halls and their special additional structures by a system- and performance-based approach. Details both of heavy elevation and roof slab structures made of prefabricated r.c. sandwich panels and lightweight external constructions are presented. Specific flooring, big size doors and partitions of industrial and commercial halls are shown.

It is also an objective to present the special construction rules and the service system aspects of the buildings of light-weight system and their particularities in the terms of building physics and fire protection. Additional information is presented about multilevel precast r.c. skeleton frames, its typical technical details and the structural solutions of mass produced blocked and panel load bearing systems in case of residential buildings.

The main object of the course is to explain the constructions of one storey high big span halls. Students practice knowledge transmitted during the presentations and workshops in their semester projects on basis of the whole complexity of previous studies. (4 credits)

Preservation of Historic Monuments *

BMEEPETT611

The course gives an overview on history and theory of the architectural preservation in Europe and Hungary. Presents the evaluation of the way of thinking from purism to the modern practice of restoration. It is an important part, when national and international documents and theoretic papers are discussed, form Morris and Ruskin’s work, over Boito’s “Prima carta del restauro” (1883) to Krakow Charter 2000. Following the historic part some technical aspects of preservation are discussed, i.e. surveying methods and techniques, non-destructive and destructive building archaeological methods etc. The brief introduction to building archaeology helps to understand the importance of theoretic reconstruction of independent building phases of the historic monument. The detailed discussion of the topic is part of the Preservation of historic buildings 2 – Building archaeology elective subject.

The third part is dealing with architectural and design-methodological questions of preservation. Especially the architectural problems of presentation of archaeological heritage, the reuse and functional problems of industrial and vernacular buildings for modern purposes. (2 credits)

History of Architecture 6 *

BMEEPETO601

The course gives an overview of the architecture in the 20-21st centuries. The classes follow chronology with focusing on the works of some great architects: Modernism and Modern Movement. Architecture between the two world wars – De Stijl, Bauhaus, Russian Constructivism, Less is more – Architecture of Ludwig Mies van der Rohe, Toward a New Architecture – Architecture of Le Corbusier. The Nordic Classicist Tradition – Architecture of E. G. Asplund and S. Lewerentz, Alvar Aalto and the modern Finnish architecture. In the second part the course picks up some relevant architectural trends: New Empiricism, New Humanism, New Brutalism and the Team X, the way from large housing estates to architecture without architects. Unfolding estates to architecture without architects.

The third part concentrates on timely problems: new materials or the multi-sensorial experience of space and surface, Rem Koolhaas’s Dirty Realism, new technology and digital perception, architecture of seduction. (3 credits)
Drawing and Composition 6
BMEEPRAA601
The main topic in the syllabus in this semester is the intuitive representation of internal and external spaces: this subject aims at teaching students perspective representation at a higher level (applying 3-6 vanishing points). While drawing the streets and squares of the Buda Castle and the internal spaces of some atmospheric old public building sin Budapest (e.g. Saint Stephen Cathedral, Opera House, Hungarian National Museum) students investigate invisible geometrical and structural relations and improve their drawing skills (applying lead pencil, ink and crayon techniques). The objective is not to simply represent a naturalistic view as a camera, but to prepare a drawing of the architectural structure of a real space after grasping the gist of the composition. (2 credits)

Department’s Design 1 *
BMEEPUITA601
Department Design 1: A special urban design course conducted by the Department of Urban Planning and Design focusing mainly on urban public space design with the help of invited lecturers and landscape designer consultants. The course is partly theoretical and partly practical where students get acquainted with special issues and problems of public space definition, public spaces usage and public space design. In the design assignment all students deal with one area, where starting from the analysis of a greater urban entity we narrow down the design problems to handling the publicly attainable spaces in between buildings. (3 credits)

Urban Design 2
BMEEPUIA601
Urban Design 2. is the main practical course of the Department of Urban Planning and Design. The design task: After the analysis of a bigger urban environment, the task is to prepare an urban design concept for a bigger urban unit and later develop it into an urban scaled architectural design (development plan). The site of the design task is the same settlement or urban environment for all students - this oncoming spring semester it is the riversides of the Danube all the way inside the city limits of Budapest - since the studio work is accompanied by common site visits, lectures and project presentations, where the possibility to learn from each other is also an important factor. (6 credits)

Special Load-Bearing Structures *
BMEEPSST601
The subject introduces the special load-bearing structures, such as large span, tall and spatial structures. We introduce the trusses, box-beams, wall-beams and arches as large span structures. We show the static behavior of tall buildings: the concept of the vertical and horizontal load-bearing structures. The behavior of spatial structures is the main topic of the semester. We introduce the RC shells, the brick-shells, the cable and textile membranes, space-trusses, grid shells (4 credits)

History of Architecture Global* (basic)
BMEEEPETO699
The complex exam (BMEEEPETO699) is mandatory for students following the new education system. The complex exam comprehends the architecture of classical antique, the medieval, the Early Modern (renaissance and baroque) and the 19th century periods. The main purpose of the exam is to summarise main tendencies in history of architecture that determined the forming of the architectural space in different historic periods. Exam topics are based on the History of Architecture 1 - 5 courses, a list is available in the department (credits)

Reinforced Concrete Structures I.**
BMEEPSSTK601
The most important methods of analysis and design of reinforced concrete (RC) structures are presented, together with their modelling, and the applied approximations. RC beams, columns, slabs, foundations and complete structures are considered. The understanding of the behaviour of RC structures is emphasized. (6 credits)

Economics 2. (Macroeconomics)
BMEGT301924
The aim is to allow students to understand today’s economic environment. After having finished the course, students should understand the key concepts of macroeconomics (e.g. national income, unemployment, inflation, budget balance, exchange rates and the balance of payments), master a basic set of tools of economic analysis and demonstrate the ability to apply them to simple practical problems. (2 credits)

Construction Management 3
(Planning of Construction Technology)
BMEEEPKEA701
The goal of the subject is to present information on the planning of elementary construction technologies related to superstructures and finishing work. The subject introduces how to apply recent innovations of building technologies during design and realisation. It gives a basic knowledge to evaluate construction options and make appropriate decisions about technology. There are case studies of building technologies used in construction of loadbearing structures, finishing and cladding works. The practical part contains workshops on planning of construction technologies: connection of structures and technologies, volume calculation, resource estimation, scheduling and construction site planning. (4 credits)

Building Constructions 6
BMEEPSST702
This subject introduces the students to the precast reinforced concrete, steel and the timber load bearing construction systems of the big span halls and their special additional structures by a system- and performance-based approach. Details both of heavy elevation and roof slab structures made of prefabricated r.c. sandwich panels and lightweight external constructions are presented. Specific flooring, big size doors and partitions of industrial and commercial halls are shown. It is also an objective to present the special construction rules and the service system aspects of the buildings of lightweight system and their particularities in the terms of building physics and fire protection. Additional information is presented about multilevel precast r.c. skeleton frames, its typical technical details and the structural solutions of mass produced blocked and panel load bearing systems in case of residential buildings. The main object of the course is to explain the constructions of one story high big span halls. Students practice knowl-
edge transmitted during the presentations and workshops in their semester projects on basis of the whole complexity of previous studies. (4 credits)

History of Art 1

BMEEPETT721

Beginnings of the art: the pictures of the cavemen. – Ancient art of the East: Egypt. – Classical art of the Antiquity: Greek and Roman art. – Early Christian and Medieval art. – Renaissance and Baroque art. – The art at the age of Enlightenment: Gothic revival, Classical revival, Classicism. – Romanticism, Realism, Impressionism, Postimpressionism. (2 credits)

Drawing 7

BMEEPRAO702

Department’s Design 2

BMEEPRAO701

This subject based on interior design. The design process focuses on abstract formal approach. Students create different 3D possibilities in the first half of the semester, then they analyse them. The project becomes in this way interior design. The design project based on the fundamental decisions and 3D modelling, which are completed by manual works. (3 credits)

Department’s design 3

BMEEPExxT711

Department Design 3 for students is a one semester design course in English, organized by the Departments of Design in. The object of the course is to introduce a multilevel design method for students from general urban concept to the design of an architectural element. A comprehensive urban-architectural design based on the analysis of the urban tissue, cultural heritage, architectural details is going to give a common frame for individual architectural proposals. Teamwork and individual work will constantly implement and define each other. The semester will also give space to work on some contemporary questions in architecture, like the sustainability of an established urban environment, the relationship and social aspects of public and private spaces, the effects of landscape design and design of public spaces buildings. (8 credits)

Soil Mechanics

BMEEEOGTK701

Dr. Géza Petrasovics, Dr. József Farkas

Fundamentals of soil mechanics, including information indispensable to architectural practice such as the interaction between subsoil and building, the importance of testing the subsoil, foundation costs, essential soil properties, soil exploration methods, the design of spread foundations, drainage (3 credits)

Building and Architectural Economics

BMEEEPEKAB01

Aim: investigate the economic side of a real estate development emphasizing the Social cost and benefit of development.

This module concentrates economical computation models, theories dealing with real estate valuation. There is a homework concerning with calculation, valuation of a real estate development. Successful submission is required for the module acceptance. Written exam as indicated, minimum pass grade required. Two corrections are allowed. Following main topics are discussed: construction cost, estimates, time value of money, building life cycle cost, measuring the worth of real estate investments. (2 credits)

Facility Management

BMEEEPEK0633

The goal of the subject is to present theory of Facility Management, introduction of Cost Efficiency concepts. Based on case studies and several site visits on commercial properties, list of managerial tasks will be indentified and explained as registration, maintenance, crisis management and others. The course also will cover related subjects as Workspace Planning and CAFM (Computer Aided Facility Management). (2 credits)

History of Hungarian Architecture 1

BMEEPET0801

The subject History of Architecture in Hungary I. aims to present and analyze the architecture of historic Hungary in European and domestic context from the history of Pannonia to the end of Baroque. The principle of the presentation is the chronological interdependence, however, particular attention is given to the main trends within the different periods as the main stylistic tendencies or external and internal factors that determine the historical and architectural context. A great emphasis is given to the exploration of the connections between the European and Hungarian history of architecture.

Lecture topics include: The beginnings of architecture in the Carpathian Basin, Roman architecture in Hungary, Early medieval architecture in Hungary - Christian Architecture between West and East. The flourishing Romanesque and the beginnings of Gothic Architecture. The rise of Gothic Architecture - architecture in towns and Gothic architecture of the orders. The beginning and the first period of the renaissance till the middle of th 16th century. The architecture of fortified palaces and fortifications. The renaissance architecture in Transylvania. The beginnings of the baroque in Western Hungary in the 17th century. The High Baroque in Hungary. (2 credits)

Drawing 8

BMEEPRAO801

Department Design 3 for students is a one semester design course in English, organized by the Departments of Design in. The object of the course is to introduce a multilevel design method for students from general urban concept to the design of an architectural element. A comprehensive urban-architectural design based on the analysis of the urban tissue, cultural heritage, architectural details is going to give a common frame for individual architectural proposals. Teamwork and individual work will constantly implement and define each other. The semester will also give space to work on some contemporary questions in architecture, like the sustainability of an established urban environment, the relationship and social aspects of public and private spaces, the effects of landscape design and design of public spaces buildings. (2 credits)
Urbanism *
BMEEEPUI0805
The goal of the course is to get students acquainted with the multidisciplinary characteristics of Urban Design, Urban Planning and Urban Studies. The semester is divided into three 4 lecture long blocks dealing with: the issues of contemporary urbanity; related fields of science and planning tools in various field of the profession. In the series of lectures professors of the Department of Urban Planning and Design and some invited experts of various fields are presenting lectures on various topics. (2 credits)

Contemporary Architect Offices *
BMEEEPIP0893
The aim of the course is representing Hungarian architect studios and giving useful information about working method of practising, creative teams. Lectures are performed by different practising architects, displaying their works by presentations or by visiting building projects. There is also a possibility to make informal conversation with architects. The lectures are organized in auditoriums or at building sites. To obtain the final mark, each student has to write an own essay of a defined topic. (2 credits)

Residential Design and Contemporary Competitions*
BMEEPPLA0897
Through the study of actual, current public commissions, this class provides a perspective on contemporary Hungarian residential building design praxis. Also, through past projects, it presents the main changes over recent years. The aim is to complement lectures in the Residential Building Design 1 course by acquainting students with as many concrete examples as possible – of contemporary Hungarian architectural creations and, primarily, of the bubbling, fertile, and often controversial world of public commissions. The highlighted standpoint and aim is for students to observe architectural praxis in today’s Hungary, even if that is through more or less successful answers to questions that are posed. Another goal is for students to develop a routine of following public commissions, as well as an understanding of the procurement system, where to find such opportunities, and the rules and methodology regarding tenders. The hidden aim, by engaging with the given public tenders within the course, is to develop an active discourse among pupils on the basis of the evaluation and ‘judgment’ that follows. (2 credits)

Complex Design 1 *
BMEEPxTB11
Students must develop a plan to the level requested for permit or for a large-scale project, to the depth of an investment program plan. Part of the building must be developed to the construction plan level. Students must also prepare dossiers of structural calculation, work details, mechanical installations and the organisation of the construction site and consult with staff members of various departments for assistance. Students can select their project as well as their Studio Master. (10 credits)

Construction Management 4. **
(Controlling of Construction Technology)
BMEEPK8001
Subject obligatory for BSc degree - The goal of the subject is to present information on the controlling process of the whole construction activity and the applied technologies involving the legal environment, the quality management, the quality survey, the work safety and the fire protection. Site and company visits are integrated in the theoretical lectures.
Main topics: Regulations concerning to the construction; Building permission/building consent; Quality in construction, Fire protection; Dry construction systems; The work of the quality surveyor; Health and safety during building construction; Controlling activities in Construction Projects (4 credits)

Building Constructions 7 **
BMEEPSK8001
The goal of the subject to introduce the building methods and the presentation of their validation possibilities. Today, the social, environmental and energy crisis in Central Europe as well is forcing to take into account the requirements of sustainability. The task of the subject the description of the sustainable construction methods, of the technical means, “gentle techniques” and presentation of specific structural systems having preserve and utilize of the existing values and environmentally conscious design and facility management of new buildings. The aim is to educate architects who are able to comprehensively, the ecological, social, value-defense, engineering, energy, economic, aesthetic considerations are also taken into account and finding and accepting reasonable compromise, adopting individual decisions. (4 credits)

Construction Law *
BMEEEPKO901
The subject introduces the legal environment of construction projects: contracts, building permit, permission of use, etc. (2 credits)

Construction Law **
BMEEPKB8001
The subject introduces the legal environment of construction projects: contracts, building permit, permission of use, etc. (2 credits)

Design of Reinforced Concrete structures*
BMEEPS0655
The subject introduces students into the way of design of approximate dimensions, joints and structural solutions of reinforced concrete structures. Invited lecturers expose some of the most significant recent investments in reinforced concrete in Hungary. The aim of the course is to develop the ability of students - on the basis of EUROCODE 2 - to adopt architectural dimensions and to evaluate the effect of the chosen architectural lay-out onto the structural solution. (2 credits)

Drawing 9 *
BMEEPRTAT901
The course provides a wide selection of representation techniques from traditional pencil drawing to collage, and from architectural geometry to computer aided visual rendering. The offered courses cover variable areas of basic architec-
tural graphics, from which students have the opportunity to choose. (2 credits)

Architectural Interiors*

BMEEPKO0905

The primary object of the Interior Architecture course is to examine the range of theories behind development of this spatial type, undertaken in the form of a lecture course and practical exams. Students will also be involved in a closed competition held in parallel with students on the Hungarian course. The lecture course is to be broken down into individual study areas which are to be introduced by visiting academics, architects and interior designers over a course of 12 - 13 weeks as follows:
- General concept of space.
- General concept of architectural space.
- Sacred / Communal / Personal space.
- Use of space / Conversion of space.
- Visual communication.
- Light / Sound / Surface.
- Application of subject / Form of subject.
- Design of University Spaces.

Successful candidates in the semester will be expected to attend lectures on a regular basis, complete written exams, practical tests and submit a valid entry to the closed competition. (2 credits)

The Form in Architecture*

BMEEPRA0404

The course introduces the basic theory of form to students of Architecture and Industrial Design. It gives a brief summary of the general concept of form and its bounding surfaces, while it classifies the main components of forms and their possible connections and relations to other forms. The course describes the detailed articulation of forms: textures, decorations and ornaments, extensions, perforations and coloration. During the semester, students will be assigned individual projects, each based on the thematic classification of forms. In these projects, students will demonstrate the implementation of the acquired theory, through a digital collection of examples from different parts of the world and various periods of history. Submitted projects will be uploaded to the department’s database, thus, this continually developing comprehensive ‘encyclopedia of forms’ shall enrich the knowledge of future students as well. (2 credits)

History of Theory of Architecture 1.*

BMEEPET0407

The subject History of Theory of Architecture I. follows the structure of preliminary architectural history courses focusing on the determinant theories of architecture of different periods. The exploration of the most important tendencies and notions of theory of architecture is based on the preliminary history of architecture studies in an essentially chronological structure, evaluating them in critical analysis and searching their role in the history of ideas. Lecture topics include: Categories and concepts of theory in the history of architecture from antiquity to the rise of modernism in the beginning of the 20th century, Vitruvius and his interpretations. Architectural theory in the Middle Ages from early Christianity to late Gothic period. Humanism and the revival of antique architecture in the 15th. The column orders and commentaries on Vitruvius; the theory of the ideal city. Baroque in the reform of the catholic church. Academic movement in France and Classicism in Italy in the 17th. Theory of architecture in France in the 18th century. Enlighten-
The education of chemical engineers and chemists has a long-standing tradition in Hungary dating back to the 18th century. Chemical engineering curricula, separating from that of mechanical and civil engineers, reach back to the 1863/64 academic year. In the 1960s chemical engineering studies were extended to the master level and introduced the range of specialised studies already. A doctoral school having a pioneering PhD program has also been established which was developed to be one of the most successful one in Hungary. Studies in English at the Faculty of Chemical Technology and Biotechnology began in the 1985/86 academic year. Currently bachelor (BSc, 7 semesters), master (MSc, 4 semesters) and doctoral (PhD, 8 semesters) studies are offered. Although the education profile in Hungarian includes chemical, biochemical and environmental engineering at each level, pharmaceutical and polymer and textile engineering at MSc level, the English curricula are only offered in chemical engineering (all levels), in environmental engineering (master level) and as doctoral studies. However, elective courses are available in English in all areas of our education. All programs are organised in the credit system providing a relatively high degree of freedom in subject selection, but prerequisites have to be taken into account when the individual study program is set.

Further information on the Faculty can be found at our website: http://ch.bme.hu/en/

Bachelor in chemical engineering

The BSc degree course in chemical engineering provides the appropriate skills and knowledge in chemistry, chemical engineering and economic sciences. The degree holder should be able to manage chemical technologies, conduct analytical tests, intermediate and final quality control, and can take part in R&D, planning, and public administration. Part of the education is specialisation in a branch.

Applicants of interested in chemical engineering are welcome. Entrance exams include chemistry or physics and mathematics. A B2 level (according to CEFR) of English is required. A one year long pre-engineering study is also possible if needed (see the relevant chapter of this bulletin).

Students in the BSc chemical engineering program receive a thorough core curriculum. These include natural sciences as chemistry, mathematics and physics, and engineering fundamentals as unit operations, process control. We assure, that our students besides a profound theoretical knowledge, can acquire up-to-date laboratory skills, get acquainted with the machines and apparati used in the chemical industry, know
the principles needed for their optimal operation, and develop expertise in a more specific technology within the chemical, food and light industries. Furthermore, our chemical engineering branch, compared to the typical curricula internationally, is highly synthetic and analytical chemistry focused resulting in an excellent understanding of chemical processes and their monitoring. Specialisations start in the fifth semester and are available to students depending on the number of applicants (minimum 5):

- Analytical and Structural Chemistry
- Chemical and Process Engineering
- Industrial Pharmaceutics
- Materials Science, Plastic and Textile Technology

The studies are completed by performing an individual bachelor thesis project and submission of the thesis. Graduation is completed, after all required credits are gained, by a successful defence of the thesis and a final examination before the Final Examination Board of professors and eminent industrialists.

Master in chemical engineering

Chemical engineering MSc students get a high level knowledge in natural sciences, engineering, informatics and economics as well as in humanities. On an international comparison our curriculum is chemistry focused, and it is especially suitable for motivated applicants having carrier plans in research and development or project management.

Applicants of holding chemical engineering bachelor degree (or related) are welcome to widen their knowledge and skills in technological scientific fields of the chemical industry. Entrance exams include chemistry and mathematics. A B2 level (according to CEFR) of English is required.

Graduates will be versed in:

- operations and personnel involved in chemical processes on an industrial scale,
- development of the technology and products of industrial chemical processes,
- design of industrial chemical processes,
• how a chemical product or application is introduced into the national economy, and
• innovation of chemical processes, operations and technologies.

The newly reformed specialisation program offers a wide selection of courses grouped in five modules: analytics, materials science, biotechnology, pharmaceuticals and technology. Those, who completely gain the credits of any of these modules, will receive an extra certificate at their graduation. It is also possible to select the most interesting ones from the listed courses to gain a wide knowledge of the most important fields of the modern chemical industry.

The studies are completed by performing an individual master thesis project and submission of the thesis. Graduation is completed, after all required credits are gained, by a successful defence of the thesis and a final examination before the Final Examination Board of professors and eminent industrialists.

Master in environmental engineering

Protection of the environment is a major global issue and all nations have their task to ensure the availability of pure air, drinking water and rich soil for our and for the next generation. Obviously, industrial production is required to fulfil the needs of our societies. Thus engineers are required in each sectors of industry having deep knowledge both in their sector and in the environmental protection field. One of the biggest and most reputed institutions of this kind in Europe, the Budapest University of Technology and Economics has educated generations of engineers since its foundation in 1782. Its eight faculties of different engineering disciplines, sciences, economics and humanities actively participate in environmental education granting among others postgraduate degrees from 1974 onwards. The University has excellent training facilities: laboratories, pilot plants, computer network and a wide system of international relations.

Environmental engineering graduates are able to
• understand technologies especially be involved in developments aiming emission minimization
• select the best technique for environment protection and has a good understanding on the role of optimization
• evaluate and use analytical data and make decisions based on evidence
• are practiced in using the management tools of environmental protection
• communicate efficiently with professionals of various fields and with the public as well.

Environmental engineers find jobs in all industrial sectors since the environmental protection has profound importance in the modern industry. Environmental engineers graduated at BME are excellent in understanding chemical pollution, chemical analytics and chemical processes.

Applicants of holding any engineering degrees are welcome to widen their knowledge and skills in technological and managements fields of environmental protection. Good knowledge in chemistry, mathematics and engineering are required, since the aim of the curricula to top up an instantly applicable knowledge in all areas of environmental protection. Entrance exams include basic chemistry, physics and mathematics. A B2 level (according to CEFR) of English is required.

The environmental engineering curricula is offered with a completely reformed program from September 2017 to ensure, that we meet the needs and challenges of students planning their career either in developed or in developing countries. For the actual study program please visit our website. Two specialisations are available (min 10 applicants): environmental technology and environmental management. All environmental engineers are trained in both fields, but selecting a specialization gives the possibility to focus on the more preferred area.

Environmental technology especially focuses on applied environmental science and technological aspects of environmental protection, pollution evaluation, data evaluation, reduction of waste formation and primary energy requirement of various processes and pollution removal. The specialization offers a large selectivity among specialized courses. Environmental management aims to develop the theoretical and soft skills required to actively and efficiently coordinate activities for the protection of the environment, to manage financial, technical and human resources for the sake of protecting air and water and reducing or reusing waste.

The studies are completed by performing an individual master’s thesis project and submission of the thesis. Graduation is completed, after all required credits are gained, by a successful defence of the thesis and a final examination before the Final Examination Board of professors and eminent industrialists.
Doctoral studies
The George Oláh PhD School is eligible to issue PhD degrees from:

- Chemistry
- Chemical- bio- and environmental engineering

We are proudly having the allowance of Nobel Laureate George Oláh, a former student and faculty member, to use his name. “Nomen est Omen”, in accordance with the high expectations our PhD School has strong requirements at an internationally highly competitive level (see also PhD minimum requirements).

The PhD program lasts for 2+2 years. After the first two years, the prerequisite for the continuation is a successful completion of a “complex examination”. During this evaluation the examining board investigates if the PhD candidate has made an appropriate progress in the PhD work within the time frame of the first two years, and whether the continuation will predictably result in the successful completion of the PhD work within the next two years.

The basic requirement for the enrollment is an MSc (or equivalent) degree from chemistry, chemical engineering or a related topic. For the enrollment the previous results during the BSc and MSc studies, documents about any scientific activities (papers, scientific presentations etc.) should be presented, and an interview (personally, or via skype, or by any other possible means) should be carried out in the presence of the prospective supervisor and two other members of the examining committee. The decision about the enrolment of a PhD candidate will then be made by the Council of the Doctoral School upon the suggestion given by the examining committee.

The list of the approved PhD research projects to be offered are renewed two times a year (next update is on November 21, 2016). The research projects offered can be modified with the agreement of the supervisor.

The most important part of the PhD curriculum is the research work carried out by the guidance of the supervisor. The supervisor is a key person during the PhD process, and a thorough cooperation between the PhD candidate and the supervisor is of utmost importance. The research project must be worked out by the supervisor, since the necessary background (laboratory facilities, specific instruments etc.) determines the success of the entire PhD project. To obtain information on the supervisor it is advised to study the approved PhD research projects offered, the personal home page, as well as the scientific publications in the Web of Science database if available, or alternatively in Google Scholar, which is free of charge.

Additionally to the research work itself, which is the core of the PhD studies, some PhD courses from the basic disciplines of chemistry, as well as from highly specialized topics should be completed. The “directed teaching” is an integral part of the curriculum as well, aimed at broadening the knowledge of the PhD student by teaching undergraduates. This teaching activity is maximized in four hours per week during a semester.

The PhD degree can be awarded upon the decision of the Doctoral Council of the University, provided that certain minimum requirements among others of a (i) completion of the “complex examination” (ii) publication of at least three peer reviewed scientific papers in journals with SCI impact factors with dominating (more than 50%) contribution of the applicant (iii) successful defence of the thesis are fulfilled. In spite of these strict minimum requirements more than 70% of our enrolled PhD students obtain the degree. A detailed description of the PhD requirements is available upon request.

For further information please contact Dr. Zoltán Benkő via e-mail (zbenko@mail.bme.hu) and visit our dedicated website (http://www.ch.bme.hu/en/education/PhD)

Departments

- Department of Inorganic and Analytical Chemistry
- Department of Physical Chemistry and Materials Science
- Department of Organic Chemistry and Technology
- Department of Chemical and Environmental Process Engineering
- Department of Applied Biotechnology and Food Science
Curriculum of BSc Subjects
General Subjects

| Subject | Code | Credits | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Requisities |
|--|-----------------------|---------|---|---|---|---|---|---|---|
| Compulsory English I. | BMEGT63A301 | 2 | 0/4/0p |
| Compulsory English II. | BMEGT63A302 | 2 | 0/4/0p |
| English for Engineers | BMEGT63A051 | 2 | 0/2/0p |
| Communication Skills - English OR | BMEGT63A061 | 2 | 0/2/0p |
| Manager Communication - English OR | BMEGT63A071 | 2 | 0/2/0p |
| Intercultural Comm. - English | BMEGT63A091 | 2 | 0/2/0p |
| Mathematics A1a - Calculus | BMETE90AX00 | 6 | 4/2/0e |
| General Chemistry | BMEVESAA101 | 5 | 4/0/0e |
| General Chemistry Calculations | BMEVESAA104 | 4 | 0/3/0p |
| General Chemistry Laboratory Practice | BMEVESAA209 | 5 | 0/0/6p |
| Computing | BMEVESAA103 | 2 | 0/2/0p |
| Chemical Eng. Fundamentals | BMEGEVGAV03 | 2 | 2/0/0e |
| Chemical Engineering Practice | BMEGEVGAV04 | 3 | 0/1/2p |
| Macromolecules and Microeconomics | BMEGT30A001 | 4 | 4/0/0e |
| Mathematics A2c | BMETE90AX17 | 6 | 4/2/0e |
| Mathematics A3 for Chemical Engineers and Bioengineers | BMETE90AX18 | 4 | 2/2/0e |
| Physics 1 - Mechanics | BMETE14AX15 | 4 | 2/2/0e |
| Inorganic Chemistry | BMEVESAA208 | 3 | 1/0/0p |
| Inorganic Chemistry Laboratory Practice | BMEVESAA301 | 3 | 0/0/4p |
| Organic Chemistry I. | BMEVESZA101 | 5 | 3/2/0e |
| Chemical Technology | BMEVEFKA023 | 3 | 2/0/0p |
| Physics 1 Electrodynamics | BMETE14AX04 | 2 | 2/0/0e |
| Physics Laboratory | BMETE14AX05 | 2 | 0/0/3p |
| Organic Chemistry II. | BMEVESZA401 | 4 | 3/0/0e |
| Analytical Chemistry | BMEVESAA302 | 5 | 4/0/0p |
| Physical Chemistry I | BMEVEFKA304 | 5 | 3/1/0e |
| Polymers | BMEVEFAA306 | 5 | 2/0/2p |
| Organic Synthesis Laboratory Practice | BMEVESZA402 | 4 | 0/0/5p |
| Analytical Chemistry Laboratory Practice | BMEVESAA403 | 4 | 1/0/4p |
| Physical Chemistry II | BMEVEFAA405 | 4 | 2/1/0e |
| Medicines | BMEVESZA403 | 3 | 2/0/0e |
| Organic Technology | BMEVEFAA409 | 3 | 3/0/0p |
| Environmental Chemistry and Technology | BMEVEFKA403 | 4 | 3/0/0e |
| Organic Technology | BMEVESZA411 | 3 | 2/0/0p |
| Chemical Unit Operations I | BMEVEFKA410 | 6 | 3/2/0p |
| Business Law | BMEGT55A001 | 2 | 2/0/0p |
| Design of Experiments | BMEVEVMAS06 | 3 | 2/1/0p |
| Hydrocarbon Processing | BMEVEFKD006 | 3 | 2/0/1e |
| Biochemistry | BMEVEBA301 | 4 | 3/0/0e |
| Physical Chemistry Lab. Prac. | BMEVEFAA506 | 3 | 0/0/4p |
| Chemical Process Control | BMEVEVMAS054 | 5 | 2/1/0p |
| Chemical Unit Operations II | BMEVEFKF512 | 6 | 2/1/4e |
| Managem. and Business Econ. | BMEGT02A001 | 4 | 4/0/0p |
| Safety technology in the Chemical Industry | BMEVESZA101 | 2 | 2/0/0p |
| Quality Management | BMEVEFKF615 | 4 | 3/0/0p |
| Chemical Unit Op. Practice | BMEVEFKF613 | 3 | 0/0/4p |
| Electives (humanities) 2 subjects | | | |
| Specialization | 26 | | |
| Thesis | BMVEV_A999 | 15 | 0/0/14p |
| Summer Practice | BMEVE_..A888 | 0 | 6 weeks/s |
| Electives | 10 | | |
Curriculum of BSc Subjects of Specialization

<table>
<thead>
<tr>
<th>Subject</th>
<th>Name</th>
<th>Code</th>
<th>Credits</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>Requisities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical and Structural Chemistry Specialization</td>
<td>Analytical and Structure Determination Laboratory</td>
<td>BMVESAA604</td>
<td>5</td>
<td>1/0/4p</td>
<td></td>
<td></td>
<td>BMVESAA512, BMVESAA403</td>
</tr>
<tr>
<td></td>
<td>Elemental Analysis</td>
<td>BMVESAA701</td>
<td>3</td>
<td>2/0/0p</td>
<td></td>
<td></td>
<td>BMVESAA403</td>
</tr>
<tr>
<td></td>
<td>Chemical and Biosensors</td>
<td>BMVEAAA708</td>
<td>3</td>
<td>2/0/0e</td>
<td></td>
<td></td>
<td>BMVESAA403</td>
</tr>
<tr>
<td></td>
<td>Chromatography</td>
<td>BMVEAAA611</td>
<td>3</td>
<td>2/0/0e</td>
<td></td>
<td></td>
<td>BMVESAA403</td>
</tr>
<tr>
<td></td>
<td>Elucidation of Organic Structures</td>
<td>BMVESAA512</td>
<td>3</td>
<td>3/0/0p</td>
<td></td>
<td></td>
<td>BMVESZA401</td>
</tr>
<tr>
<td></td>
<td>Theory of Testing Methods in Material Sciences</td>
<td>BMVEFAA708</td>
<td>4</td>
<td>3/0/0e</td>
<td></td>
<td></td>
<td>BMVESZA301, BMETE14AX15, BMETE90AX17</td>
</tr>
<tr>
<td></td>
<td>Organic Chemistry III</td>
<td>BMVESKA504</td>
<td>2</td>
<td>2/0/0e</td>
<td></td>
<td></td>
<td>BMVESAA401</td>
</tr>
<tr>
<td></td>
<td>Project Work</td>
<td>BMVESAA777</td>
<td>3</td>
<td>0/1/0p</td>
<td></td>
<td></td>
<td>BMVESAA403</td>
</tr>
<tr>
<td>Chemical and Process Engineering Specialization</td>
<td>Hydrocarbon Technology and Catalysis</td>
<td>BMVEKFA503</td>
<td>5</td>
<td>2/0/3p</td>
<td></td>
<td></td>
<td>BMVEKFA506</td>
</tr>
<tr>
<td></td>
<td>Process Engineering</td>
<td>BMVEVMA605</td>
<td>5</td>
<td>3/0/2e</td>
<td></td>
<td></td>
<td>BMVEKFA512</td>
</tr>
<tr>
<td></td>
<td>Environmental Benign Chemical Processes</td>
<td>BMVEVMA607</td>
<td>4</td>
<td>3/0/0e</td>
<td></td>
<td></td>
<td>BMVEKFA512</td>
</tr>
<tr>
<td></td>
<td>Computer Process Control</td>
<td>BMVEKFA709</td>
<td>3</td>
<td>2/0/1e</td>
<td></td>
<td></td>
<td>BMVEVM504</td>
</tr>
<tr>
<td></td>
<td>Chemical Production Control</td>
<td>BMVEKTA707</td>
<td>3</td>
<td>2/0/1p</td>
<td></td>
<td></td>
<td>BMVEKFA203, BMVEKFA512</td>
</tr>
<tr>
<td></td>
<td>Radiochemistry and Nuclear Energetics</td>
<td>BMVEKFA502</td>
<td>3</td>
<td>2/0/1p</td>
<td></td>
<td></td>
<td>BMVESAA101</td>
</tr>
<tr>
<td></td>
<td>Project Work</td>
<td>BMVEKFA777</td>
<td>3</td>
<td>0/1/0p</td>
<td></td>
<td></td>
<td>BMVESAA403</td>
</tr>
<tr>
<td>Industrial Pharmaceutics Specialization</td>
<td>Elucidation of Organic Structures</td>
<td>BMVESAA512</td>
<td>3</td>
<td>3/0/0p</td>
<td></td>
<td></td>
<td>BMVESZA401</td>
</tr>
<tr>
<td></td>
<td>Organic Chemistry III</td>
<td>BMVESKA504</td>
<td>2</td>
<td>2/0/0e</td>
<td></td>
<td></td>
<td>BMVESZA401</td>
</tr>
<tr>
<td></td>
<td>Organic Chemistry Laboratory Practice I</td>
<td>BMVESKA605</td>
<td>5</td>
<td>0/0/6p</td>
<td></td>
<td></td>
<td>BMVESZA401, BMVESZA402</td>
</tr>
<tr>
<td></td>
<td>Pharmaceutical Technology I</td>
<td>BMVEKIA704</td>
<td>2</td>
<td>2/0/0p</td>
<td></td>
<td></td>
<td>BMVESIA606</td>
</tr>
<tr>
<td></td>
<td>Unit processes in Industrial Drug Synthesis Laboratory Practice</td>
<td>BMVESTA705</td>
<td>4</td>
<td>0/0/5p</td>
<td></td>
<td></td>
<td>BMVESIA606</td>
</tr>
<tr>
<td></td>
<td>Unit processes in Industrial Drug Synthesis</td>
<td>BMVESTA606</td>
<td>2</td>
<td>2/0/0e</td>
<td></td>
<td></td>
<td>BMVESZA301</td>
</tr>
<tr>
<td></td>
<td>Technology of Pharmaceuticals Materials</td>
<td>BMVESTA607</td>
<td>3</td>
<td>2/0/1e</td>
<td></td>
<td></td>
<td>BMVESZ401</td>
</tr>
<tr>
<td></td>
<td>Unit Processes of Organic Chemistry</td>
<td>BMVESTA508</td>
<td>2</td>
<td>2/0/0e</td>
<td></td>
<td></td>
<td>BMVESTA411</td>
</tr>
<tr>
<td></td>
<td>Project Work</td>
<td>BMVESTA777</td>
<td>3</td>
<td>0/1/0p</td>
<td></td>
<td></td>
<td>BMVESZA403</td>
</tr>
<tr>
<td>Materials Science</td>
<td>Testing Methods in Material Sciences</td>
<td>BMVEVMA502</td>
<td>3</td>
<td>0/0/4p</td>
<td></td>
<td></td>
<td>BMVEF409</td>
</tr>
<tr>
<td></td>
<td>Physical Chemistry of Surfaces</td>
<td>BMVEFKA603</td>
<td>3</td>
<td>2/0/0p</td>
<td></td>
<td></td>
<td>BMVEF409</td>
</tr>
<tr>
<td></td>
<td>Material Science Laboratory Practice</td>
<td>BMVEVMA603</td>
<td>3</td>
<td>0/0/4p</td>
<td></td>
<td></td>
<td>BMVEF409</td>
</tr>
<tr>
<td></td>
<td>Polymer Physics</td>
<td>BMVEVMA511</td>
<td>3</td>
<td>2/0/0p</td>
<td></td>
<td></td>
<td>BMVEF409</td>
</tr>
<tr>
<td></td>
<td>Project Work</td>
<td>BMVEEFA777</td>
<td>3</td>
<td>0/1/0p</td>
<td></td>
<td></td>
<td>BMVESZA403</td>
</tr>
<tr>
<td></td>
<td>Nonconventional Materials</td>
<td>BMVEEFA707</td>
<td>3</td>
<td>2/0/1p</td>
<td></td>
<td></td>
<td>BMVEF405</td>
</tr>
<tr>
<td></td>
<td>Metals and Metal Matrix Composites</td>
<td>BMVEEFA602</td>
<td>2</td>
<td>2/0/0e</td>
<td></td>
<td></td>
<td>BMVESZ405</td>
</tr>
<tr>
<td></td>
<td>Modern Engineering Ceramics</td>
<td>BMVEEFA601</td>
<td>2</td>
<td>2/0/0e</td>
<td></td>
<td></td>
<td>BMVESZ405</td>
</tr>
<tr>
<td></td>
<td>Theory of Testing Methods in Material Sciences</td>
<td>BMVEVMA708</td>
<td>4</td>
<td>3/0/0p</td>
<td></td>
<td></td>
<td>BMVESZA401</td>
</tr>
<tr>
<td>Polymer Technology Specialization</td>
<td>Theory of Testing Methods in Material Sciences</td>
<td>BMVEF407</td>
<td>4</td>
<td>3/0/0p</td>
<td></td>
<td></td>
<td>BMVESZ401</td>
</tr>
<tr>
<td></td>
<td>Machines and Moulds for Polymer Processing</td>
<td>BMVEVMA705</td>
<td>4</td>
<td>2/0/1p</td>
<td></td>
<td></td>
<td>BMVESZ401</td>
</tr>
<tr>
<td></td>
<td>Polymer Processing</td>
<td>BMVEVMA608</td>
<td>7</td>
<td>4/0/5e</td>
<td></td>
<td></td>
<td>BMVESZ401</td>
</tr>
<tr>
<td></td>
<td>Polymer Physics Laboratory Practice</td>
<td>BMVEVMA509</td>
<td>3</td>
<td>0/0/4p</td>
<td></td>
<td></td>
<td>BMVESZ401</td>
</tr>
<tr>
<td></td>
<td>Polymer Additives</td>
<td>BMVEVMA610</td>
<td>2</td>
<td>2/0/0e</td>
<td></td>
<td></td>
<td>BMVESZ401</td>
</tr>
<tr>
<td></td>
<td>Polymer Physics</td>
<td>BMVEVMA511</td>
<td>3</td>
<td>2/0/0e</td>
<td></td>
<td></td>
<td>BMVESZ401</td>
</tr>
<tr>
<td></td>
<td>Project work</td>
<td>BMVEEFA777</td>
<td>3</td>
<td>0/1/0p</td>
<td></td>
<td></td>
<td>BMVESZ401</td>
</tr>
<tr>
<td>Textile Technology Specialization</td>
<td>Theory of Testing Methods in Material Sciences</td>
<td>BMVEF408</td>
<td>4</td>
<td>3/0/0p</td>
<td></td>
<td></td>
<td>BMVESZ401</td>
</tr>
<tr>
<td></td>
<td>Fibre Forming Polymers</td>
<td>BMVEF512</td>
<td>2</td>
<td>2/0/0p</td>
<td></td>
<td></td>
<td>BMVESZA401</td>
</tr>
<tr>
<td></td>
<td>Chemistry of Dyes and Surfactants</td>
<td>BMVESTA510</td>
<td>2</td>
<td>2/0/0p</td>
<td></td>
<td></td>
<td>BMVESZA401</td>
</tr>
<tr>
<td></td>
<td>Colorimetry, Colorimasurement</td>
<td>BMVEVMA515</td>
<td>2</td>
<td>2/0/0p</td>
<td></td>
<td></td>
<td>BMVESZ401</td>
</tr>
<tr>
<td></td>
<td>Chemical Technology of Textiles I</td>
<td>BMVEVMA617</td>
<td>7</td>
<td>3/0/4e</td>
<td></td>
<td></td>
<td>BMVESZ401</td>
</tr>
<tr>
<td></td>
<td>Chemical Technology of Textiles II</td>
<td>BMVEVMA718</td>
<td>4</td>
<td>2/0/2p</td>
<td></td>
<td></td>
<td>BMVESZ401</td>
</tr>
<tr>
<td></td>
<td>Project work</td>
<td>BMVEEFA777</td>
<td>3</td>
<td>0/1/0p</td>
<td></td>
<td></td>
<td>BMVESZ401</td>
</tr>
<tr>
<td>Subject</td>
<td>Name</td>
<td>Code</td>
<td>Credits</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>------</td>
<td>---------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td>General subjects</td>
<td>Material Science Analysis Methods</td>
<td>BMEVESAM202</td>
<td>4</td>
<td>2/0/2p</td>
<td>fall semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physical Chemistry and Structural Chemistry</td>
<td>BMEVEFAM201</td>
<td>5</td>
<td>5/0/0e</td>
<td>fall semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Environmentally Benign and Catalytic Processes</td>
<td>BMEVEKFM210</td>
<td>5</td>
<td>3/0/1e</td>
<td>fall semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organic Chemical Technology II</td>
<td>BMEVESZM201</td>
<td>5</td>
<td>2/0/2p</td>
<td>fall semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Computational Chemistry</td>
<td>BMEVESAM301</td>
<td>3</td>
<td>2/0/1e</td>
<td>spring semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thesis Project</td>
<td>Thesis Project I</td>
<td>BMEVEyyMxxx</td>
<td>15</td>
<td>0/0/11p</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Summer Practice</td>
<td>BMEVExxM888</td>
<td>0</td>
<td>4 weeks/s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thesis Project II</td>
<td>BMEVEyyMxxx</td>
<td>15</td>
<td>0/0/11p</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Materials science: Traditional Structural Materials and Polymers</td>
<td>BMEVEFAM110</td>
<td>4</td>
<td>2/0/1e</td>
<td>spring semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemical Process Design and Control</td>
<td>BMEVEKFM101</td>
<td>4</td>
<td>2/0/2p</td>
<td>spring semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Complex and Inorganic Chemistry</td>
<td>BMEVESAM101</td>
<td>2</td>
<td>2/0/0p</td>
<td>spring semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics M1c - Differential Equations</td>
<td>BMETE90MX44</td>
<td>3</td>
<td>2/1/0e</td>
<td>spring semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intellectual Property Management</td>
<td>BMEVEKFM103</td>
<td>2</td>
<td>2/0/0e</td>
<td>spring semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organic Chemistry</td>
<td>BMEVESZM101</td>
<td>4</td>
<td>3/0/0e</td>
<td>spring semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Social and Visual Communication</td>
<td>BMETG43MS07</td>
<td>2</td>
<td>2/0/0p</td>
<td>spring semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Design of Experiments 2</td>
<td>BMEVEKFM209</td>
<td>3</td>
<td>2/0/0p</td>
<td>fall semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modern Chemical Technology</td>
<td>Modern Physics for Chemical Engineers</td>
<td>BMETE14MX00</td>
<td>3</td>
<td>3/0/0e</td>
<td>fall semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biology, Biotechnology</td>
<td>BMEVEBM301</td>
<td>3</td>
<td>2/0/0p</td>
<td>spring semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Economic Analyses of Technology</td>
<td>BMETG30MS07</td>
<td>2</td>
<td>2/0/0e</td>
<td>spring semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quality Control</td>
<td>BMEVESAM206</td>
<td>2</td>
<td>2/0/0p</td>
<td>fall semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Technology Management</td>
<td>BMETG20M005</td>
<td>2</td>
<td>2/0/0p</td>
<td>fall semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modern Separation Technologies</td>
<td>BMEVEKFM104</td>
<td>3</td>
<td>2/0/1p</td>
<td>technology modul, fall semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organic Chemical Technology</td>
<td>BMEVESZM503</td>
<td>3</td>
<td>2/0/0e</td>
<td>pharmaceuticals modul, spring semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Process Engineering</td>
<td>BMEVEKFM211</td>
<td>4</td>
<td>2/0/1p</td>
<td>technology modul, spring semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conventional and Modern Forms of Energy Production</td>
<td>BMEVEKFM302</td>
<td>4</td>
<td>2/0/1e</td>
<td>technology modul, fall semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Petrochemistry</td>
<td>BMEVEKFM402</td>
<td>6</td>
<td>2/0/3e</td>
<td>technology modul, spring semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unit Processes of Organic Chemistry</td>
<td>BMEVESZM207</td>
<td>3</td>
<td>0/2/0p</td>
<td>pharmaceuticals modul, spring semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biotechnomarics 2 - proteomics</td>
<td>BMEVESZM501</td>
<td>4</td>
<td>2/0/1p</td>
<td>biotechnology modul, spring semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hydrocarbon technology</td>
<td>BMEVEKFM503</td>
<td>3</td>
<td>2/0/0e</td>
<td>technology modul, fall semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Radiochemistry and Nuclear Energetics</td>
<td>BMEVEKFM502</td>
<td>3</td>
<td>2/0/1p</td>
<td>technology modul, fall semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Environmentally Benign Chemical Processes</td>
<td>BMEVEKFM501</td>
<td>4</td>
<td>3/0/0e</td>
<td>technology modul, spring semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inorganic Chemistry Laboratory Practice</td>
<td>BMEVESZM502</td>
<td>3</td>
<td>0/0/4p</td>
<td>analytcs modul, fall semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Applied electrochemistry</td>
<td>BMEVESZM505</td>
<td>3</td>
<td>2/0/0e</td>
<td>analytcs modul, spring semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plastics</td>
<td>BMEVEKFM502</td>
<td>5</td>
<td>2/0/2p</td>
<td>materials sciencs modul, fall semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Analytical and Structure Determination Laboratory</td>
<td>BMEVESZM504</td>
<td>5</td>
<td>1/0/4p</td>
<td>analytcs modul, spring semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemistry and Technology of Biomaterials</td>
<td>BMEVESZM708</td>
<td>2</td>
<td>2/0/0p</td>
<td>pharmaceuticals modul, fall semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medicines</td>
<td>BMEVESZM502</td>
<td>3</td>
<td>2/0/0e</td>
<td>pharmaceuticals modul, spring semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biocatalysis</td>
<td>BMEVESZM704</td>
<td>2</td>
<td>2/0/0p</td>
<td>biotechnology modul, fall semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nonconventional Materials</td>
<td>BMEVEFAM503</td>
<td>3</td>
<td>2/0/0p</td>
<td>materials sciencs modul, fall semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biopolymers</td>
<td>BMEVEFAM4212</td>
<td>4</td>
<td>2/0/1e</td>
<td>materials sciencs modul, spring semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bioinorganic Chemistry</td>
<td>BMEVESAM501</td>
<td>2</td>
<td>2/0/0p</td>
<td>analytcs modul, fall semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physical Chemistry of Surfaces</td>
<td>BMEVEKFM501</td>
<td>3</td>
<td>2/0/0e</td>
<td>materials sciencs modul, spring semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chromatography</td>
<td>BMEVESZM503</td>
<td>3</td>
<td>2/0/0e</td>
<td>analytcs modul, fall semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Environmental Toxicology</td>
<td>BMEVEBM111</td>
<td>3</td>
<td>1/0/1p</td>
<td>biotechnology modul, spring semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bioregulation</td>
<td>BMEVEKFM210</td>
<td>3</td>
<td>2/0/0e</td>
<td>biotechnology modul, fall semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methods in Molecular Biology</td>
<td>BMEVEBM210</td>
<td>3</td>
<td>2/0/0e</td>
<td>biotechnology modul, fall semester</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Analytical Chemistry
BMEVESEAA302
Dr Róbert E Gyurcsányi
To provide thorough understanding of the fundamental principles, main methods and applications of chemical analysis (volumetric, gravimetric and instrumental analysis), as well as their tools of trade. The subject aims to provide a basis for later subjects including the Analytical Chemistry Laboratory and other advanced analytical chemistry subjects within Analytical and Structural Chemistry Specialization (5 credits)

Analytical Chemistry Laboratory Practice
BMEVESEAA403
Dr Róbert E Gyurcsányi, Dr Gergely Lautner
Based on the theoretical background obtained in the analytical chemistry course the primary objective of the Analytical Chemistry Laboratory Practice is to gain hands-on experience in the various analytical techniques, i.e., volumetric analysis and instrumental methods of analysis. During laboratory practices the students will learn the workflow of quantitative and qualitative analysis gaining insight in the main parts and practical operation of analytical instruments. (4 credits)

Biochemistry
BMEVEBEA301
Dr Andráss Szarka
The subject (biochemistry) is not intended to provide the students with a comprehensive biochemistry knowledge. Instead, it offers a short overview of the biochemical pathways and their connections. Its first part covers basic knowledge from the field of cell biology. The second part focuses on the fundamental principles of enzymology and bioenergetics, which additionally serves as the basis for the third part that concentrates on metabolic processes including the energy production pathways of oxidative phosphorylation and photosynthesis. Finally, the fourth part discusses the basics of molecular biology. (4 credits)

Business Law
BMEGT55A001
The problems of the area will be treated in two major parts. Part One introduces students to the general topics, for example the concept of law, the functions of the law in the socioeconomic life. Some basic legal problems, like the conception, characteristics and functions of the modern state and, in a comparative view, the characteristics of the Anglo-Saxon and continental systems of business law and the development of the Hungarian business law will be also discussed. The emphasis of Part Two is on the questions of company law and competition law presented in a European context. The lectures of this part outline not only the regulations of the Hungarian Company Act and Company Registry Act but they cover EU directives and regulations on companies and competition as well. (2 credits)

Chemical Engineering Practice
BMEGEVGAV04
All drawings are made only on the practice hours and are made with free hand used the half ready worksheets. Fundamental rules of technical drawing. Arrangement of views by the European projection system. Sections. Threaded parts. Drawing of welded joints. Fits and tolerances. Reading and detailing training of assembly drawings by free hand sketches. Laboratory exercises: measurement of revolution per minute, measurement of pressure, of flow rate and velocity. Fan measurement. Friction losses in pipes and pipe fittings. Sieve analysis. (3 credits)

Chemical Process Control
BMEVEVMA504
Dr Péter Mizsey, Dr Katain Koczka, Tibor Nagy
The subject is aiming to teach the students the elementary theoretical and practical tasks of the control of the plant, so that, the engineers of the future will be able to work in a team that designs plants, technologies, devices. And, these items are to be controlled, such a work needs also control knowledge for the chemical and biochemical engineers. (5 credits)

Chemical Technology
BMEVEKFA203
Dr György Pátzay, Dávid Havasi
The aim of the subject is providing information in the fields of chemical technology, chemical and environmental technologies, including knowledge in corrosion protection, energy production and fuels. Lectures in the field of chemical technology, basic principles and characteristics, economical environmental and energy efficiency aspects of chemical technologies. Balances, yield, schemes. Inorganic chemical technologies, ammonia, nitric acid, urea, sulfuric acid, fertilizer, iron and steel, aluminium, chlorine and sodium hydroxide productions. Energy production and corrosion processes, crude oil, natural gas and coal processing, ceramic and water treatment industries. (3 credits)

Chemical Unit Operations I
BMEVEKFA410
Dr Endre Rév
Chemical unit operations are basic building units of chemical processes. This first course provides an introduction to hydrodynamic and thermal processes only. This includes material and heat balance, momentum balance, fluid mechanics, concepts of fluid behaviour, Bernoulli equations, transportation of fluids, hydrodynamic models, flow in pipes and channels, steady flow, rheology, viscosity, boundary-layer formation, friction factor, pressure flow through equipment, pressure drop across packed towers. Hydrodynamic unit operations: flow in pipes, mixing, sedimentation (settling), filtration, fluidization. Thermal operations: heat

Chemical Unit Operations II

BMEVEKFA512
Dr Edit Székely
This is an introductory course on separation processes and on basic calculations of chemical reactors. Topics cover the basic methods of mass transfer calculations and principles of different mass transfer processes. Mass, component and heat balance equations are used throughout the course. Distillation, extraction and absorption are discussed in details including equipment and short-cut calculations. Simple estimations for chemical reactors are included. (6 credits)

Chemical Unit Operations Laboratory Practice

BMEVEKFA613
Dr Edit Székely
The aim of the course is to introduce engineering students into the chemical unit operation by a detailed laboratory practice. During the course the students meet selected measurements that represent the most important separation processes, reaction kinetic measurements, and modeling of some chemical units. (3 credits)

Colloid chemical approach to nanotechnology

BMEVEFA409
Dr Zoltán Hőrvölgyi, Dr Emőke Albert
The main objective of the course is to provide a strong colloid chemical background for the preparation, characterization and application of nanomaterials. (3 credits)

Computing

BMEVESAA103
Dr Gábor Csonka
Basic IT support for engineering computations and presentation of the results (Excel, Word, ChemSketch). Programming in Visual Basic for Excel. (2 credits)

Design of Experiments

BMEVEVMA606
Péter Kunovszki
To teach the basic principles and methods of mathematical statistical treatment of measurement data. To teach the design and analysis of the most basic full factorial experimental designs. (3 credits)

Environmental Chemistry and Technology

BMEVEKFA403
Dr Andrea Nagy-Szabó, Dr Gábor Bajnóczy
Understanding the formation, possible reactions of environmentally polluting materials. Students becomes familiar with the chemistry of pollutants in the air, water and soil. They get to know main chemical and physico-chemical processes in the atmosphere, hydro-sphere, lithosphere and biosphere will be discussed. Chemical basis and the effects of the environmentally harmful materials on the living and non-living objects will be presented as well. The students will be able to identify contaminants emitted by technological processes. They learn about modern technological processes reducing the harmful emissions decreasing the environmental degradation. (4 credits)

General Chemistry

BMEVESAA101
Dr Gábor Csonka, Dr László Nyulászsi
To get a basic overview of the principles of Chemistry, providing introductory information, including definitions etc. which can be used in later specific subjects. The course consists of three parts. In the first one the macroscopic properties of the matter are discussed, including phase transitions. In the second part basic chemical principles as acid-base and redox processes, chemical equilibria, electrochemistry and chemical kinetics will be covered briefly. In the third part the atomic and molecular structure, the chemical bonding and the rules in the periodic table are explained. (5 credits)

General Chemistry Laboratory Practice

BMEVESAA209
Dr Ilona Kovács
In this subject the basic chemistry procedures are practiced (e.g. distillation, recrystallization, sublimation). Passing these exercises the students acquire knowledge about the basic laboratory equipment as well. Simple measurements are also performed (e.g. measurements of mass and volume, measuring the melting and boiling point, density measurement methods, pH measurement). Simple preparative tasks (e.g. precipitation, dissolution of metals, producing gas in laboratory, calefaction, preparation of complexes, electrochemistry) are also completed. (5 credits)

Hydrocarbon processing

BMEVEKFA506
Dr Ákos Fürcht
The aim of the subject is to discuss the importance of crude oil, as a primary energy source. It presents crude oil processing technologies and discus common use of the products and describes the challenges of the oil refining business. (3 credits)

Industrial Safety

BMEVESZA101
Dr István Csontos
The aim of this course is to introduce the students to the concepts related to fire and explosion hazards and the treatment of toxic material, which is essential for engineers. Another goal is to provide the essentials of safe work and management skills through many practical examples. The subject also presents the standard safety concepts and practice used in the EU and in the U.S. (2 credits)
Inorganic Chemistry
BMEVESAA208
Dr László Nyulászi
Get a basic overview of the field of Inorganic chemistry. The most important trends and rules determining the physical and chemical properties of the elements and simple chemical compounds, such as the periodic system, redox properties, complexing abilities, acid-base properties are discussed. Physical and chemical properties of the elements and basic inorganic compounds (hydrides, halides, oxides, common inorganic acids and bases) and the chemistry of industrially important inorganic systems are explained. (3 credits)

Inorganic Chemistry Laboratory Practice
BMEVESAA301
Dr Ödön Wagner
The aim of this laboratory practice is to increase the knowledge of the students on the topic of inorganic chemistry. The properties of inorganic compounds and the methods of qualitative analysis are explained. (3 credits)

Macro- and Microeconomics
BMEGT30A001

Management and Business Economics
BMEGT20A001
This course introduces the essentials of management as they apply within the contemporary work environment and gives a conceptual understanding of the role of management in the decision making process. It particular attention is paid to management theories, corporate finance, leadership, teamwork, quality management, management of technology, economics calculation and operations management. For problem formulation both the managerial interpretation and the mathematical techniques are applied. (4 credits) (4 credits)

Mathematics A1a - Calculus
BMETE90AX00
Dr. László Ketekeméty, György Richlik

Mathematics A2c
BMETE90AX17
Dr László Ketskeméty, György Richlik

Mathematics A3 for Chemical Engineers and Bioengineers
BMETE90AX18
Dr Márita Lázi
Outcomes, events, and probability, conditional probability and independence, discrete and continuous random variables, distribution function, density function, expected values and variance, binomial, geometric, poisson, uniform, exponential, normal distribution, joint distributions, and independence, covariance and correlation, the law of large numbers, central limit theorem, exploratory data analysis, graphical and numerical summaries, estimators, unbiased estimators, the linear regression model, confidence intervals, testing hypotheses (4 credits)

Medicines
BMEVESZA403
Dr Ervin Kovács, Dr Ferenc Faigl
The subject gives a brief introduction to the medicinal chemistry and pharmacology. The fundamental pharmacological definitions and concepts as well as the historical background of drug discovery and design are presented. Selected examples of drug activity at some common target receptors demonstrate the importance of the specific receptor-drug interactions and the importance of chemical modifications of the lead molecules to produce highly selective medicines. Concepts related to pharmacokinetics are introduced, such as absorption, distribution, metabolism and excretion. (3 credits)

Organic Chemical Technology
BMEVESTA411
Dr László Hegedüs, Dr György Keglevich
The subject discusses the main fields of organic chemical industry through many suitable examples. (3 credits)

Organic Chemical Technology Practice
BMEVESZA412
Dr István Csontos
The development of practical engineering approach through the presentation of the elements and characteristics of the chemical technologies. (3 credits)
Organic Chemistry I.

BMEVESZA301

Dr Ildikő Móczár, Dr József Kupai, Dr Tünde Tóth

Providing up-to-date basics for chemical engineering students in the field of natural sciences. During this course the students should learn the basics of organic chemistry, they should develop an organic chemistry approach and gain proper theoretical and practical foundation for their further studies on material sciences, organic chemistry, chemical technology and biochemistry. (5 credits)

Organic Chemistry II.

BMEVESZA401

Dr József Kupai, Dr Ildikő Móczár, Dr Tünde Tóth

Providing up-to-date basics for chemical engineering students in the field of natural sciences. During this course the students should learn the basics of organic chemistry, they should develop an organic chemistry approach and gain proper theoretical and practical foundation for their further studies on material sciences, organic chemistry, chemical technology and biochemistry. This subject is the completion of the subject Organic Chemistry I. (4 credits)

Organic Synthesis Laboratory Practice

BMEVESZA402

Dr László Poppé, Dr Gábor Hornyánszki, Dr Tünde Tóth

Basic laboratory practice for chemical engineering students to acquire the skill of performing laboratory tasks and new laboratory methodologies of organic chemistry. During this course the students learn the basics of synthetic laboratory work, safe work methods, simple and rapid identification of the synthesized materials, and the use of the literature of organic chemistry, deepen their knowledge in this field, and gain substantial knowledge on the properties of organic compounds. (4 credits)

Physical Chemistry I

BMEVEFKA304

Dr Mihály Kállay, Dr Krisztina László

The course is part of the compulsory curriculum. A theoretical and practical introduction to physico-chemical phenomena related to “equilibrium”. Topics covered include: Definition of thermodynamic state functions and demonstration of their use in chemical engineering and biochemical engineering practices; Interpretation of multicomponent phase equilibria and chemical equilibria with the help of chemical potential. The rate of processes is covered in Physical Chemistry II. (5 credits)

Physical Chemistry II

BMEVEFAA405

Dr András Szilágyi, Dr Mihály Kállay

The course provides theoretical and practical knowledge on the chapters of physical chemistry related to “change”. The rates of processes, as well as equilibrium electrochemistry are discussed. The three main chapters of Physical Chemistry II are Reaction Kinetics, Transport Processes and Electrochemistry (4 credits)

Physical Chemistry Laboratory Practice

BMEVEFAA506

Dr Benjámin Gyarmati, Dr János Bódiss

Further deepening of the knowledge gained in Physical Chemistry (I-II) and Colloid Chemical Approach to Nanotechnology by the introduction of basic experimental methods in thermodynamics and reaction kinetics. Laboratory work and measurements of physico-chemical properties of materials will be accompanied by determination of experimental errors using statistical methods, and introducing some basic skills in experimental design. (3 credits)

Physics 1 - Mechanics

BMETE14AX15

Physics 1 Electrodynamics

BMETE14AX04

Physics Laboratory

BMETE14AX05

Introduction: Evaluation of measurement data; DC and AC circuits. Measurements, practices: nonlinear curve fitting; mechanics: elastic force, periodic motions; DC circuit: control of electric current and voltage; geometrical optics: lenses, prism, refractory index; physical optics: diffraction, wave length, Brewster angle, polarization; AC circuit: resonance in series RLC circuit; semiconductor diodes; temperature measurement; logical circuits; dynamical systems (2 credits)

Polymers

BMEVEFAA306

Dr Béla Pukánszky, Dr János Móczó

To supply basic information about plastics for chemical engineering students. Encountering plastics is unavoidable these days both in everyday life and in engineering practice. The course provides the necessary basic knowledge for engineering practice, teaches ways to recognize the main sources of actual problems and offers methods to remedy them. The individual classes discuss the production, processing, behaviour and properties of plastics, as well as related environmental issues. (5 credits)

Description of BSc Courses - Specializations

Analytical and Structural Chemistry

Analytical and Structure Determination Laboratory

BMEVESAA604

Dr Imre Miklós Szilágyi

During the laboratory practices the students will become familiar with the state-of-the-art analytical and structural chemistry instruments at the disposal of the Department of Inorganic and Analytical Chemistry (and at the Faculty of Chemical Technology and Biotechnology). They will learn the basics of advanced and coupled instrumental measurement methods of quantitative analysis, as well as of the study and elucidation of the molecular structure. (5 credits)

Chemical and Biosensors

BMEVEAAA708

Dr Róbert E Gyurcsányi

The course covers the principles, materials, methods, and selected applications of chemical and biosensing devices and systems. It presents the main modalities to integrate molecular recognition with various forms of signal transduction, such as electrochemical, optical, mass, and acoustic. The performance characteristics of the sensors are linked to their design, type of receptors, materials and signal transduction, identifying strategies for enhanced selectivity and sensitivity. The topics emphasize state of the art medical diagnostic, environmental and food safety applications of chemical and biosensors. Upon successful completion of the course, students are expected:

a) to understand chemical and biosensing and the motivation behind sensor development
b) to understand the performance characteristics and applicability of chemical and biosensors

c) to become familiar with synthetic and biological origin receptors and the basics of molecular recognition mechanisms.

d) to understand transduction mechanisms and the modalities of coupling with selective molecular recognition

e) to be able to extend the principles of chemical and biosensing towards developing biosensing devices. (3 credits)

Chromatography

BMEVEAAA611

Dr Jenő Fekete

The subject lays emphasis on the basics and applications of chromatographic analysis: theoretical background and practice will be discussed in order to develop skills for method development and application of hyphenated techniques. (3 credits)

Elemental Analysis

BMEVESAA701

Dr János Madarász, Dr László Bezur

This introductory course deals with the modern instrumental analytical methods used for element analysis, trace element analysis. Topics like the basic principles of atomic absorption methods, ICP-OES method and ICP-MS method, the construction principles of instrumentation, the characteristic analytical parameters of the methods, and the principles of analytical method development are discussed (3 credits)

Elucidation of Organic Structures

BMEVESAA512

Dr András Simon

Introduction into the theory of ultraviolet/visible, infrared, mass and nuclear magnetic resonance spectroscopy. Interpretation of ultraviolet/visible, infrared, El-mass as well as one-dimensional 1H and 13C NMR spectra. Presentation of their application for the solution of practical problems. Presentation of their joint application in the elucidation of the structure of simple unknown compounds. (3 credits)
Organic Chemistry III

BMEVESKA504

Dr László Poppe, Dr Gábor Hornyánszki

Based on the knowledge of subjects Organic Chemistry I and II, this subject puts major emphasis on all aspects of chemical problems associated with chiral compounds. By systematic classification of all major stereochemical terms and stereoselective syntheses, this subject adds solid knowledge to the previously acquired bases in organic chemistry for the future chemical engineers of pharmaceutical and fine chemical industry (2 credits).

Theory of Testing Methods in Material Sciences

BMEVEFAA708

Dr Mihály Kállay

Introduction (the models of molecules, crystals, liquids, amorphous materials; interaction of materials with electromagnetic radiation); infrared and Raman spectroscopy; absorption UV-Vis spectroscopy; optical and electronic properties of solids; photoelectron spectroscopy (UPS, XPS, AES); NMR spectroscopy (molecular and solid state), X-ray diffraction (crystal, liquid, small angle); microscopy (SEM, TEM, AFM). (4 credits)

Chemical and Process Engineering

Chemical Production Control

BMEVEKTA707

László Rácz

Learning chemical processes from design operation and product delivery. Treatment of side products and wastes. Liability and operability study. Quality insurance. Studying chemical processes from the design of operations all the way until product delivery. The subject also gives an overview about the treatment of side products and wastes. It also discusses liability and operability of chemical processes as well as the problems of quality insurance. (3 credits)

Computer Process Control

BMEVEKFA709

Dr Péter Mizsey

Process control gives funded knowledge about control theory and practice. Currently, computers are used everywhere, including in process control. Computers help, however, not only with controlling but also with designing of control structures. It enables the engineer to calculate controllability features and also modelling both steady state and dynamic processes. (3 credits)

Environmental Benign Chemical Processes

BMEVEVMA607

Dr Edit Székely

The course gives an overview of possibilities to be evaluated, understood and of the environmental impact of various technologies to be taken into account. Besides, thorough case studies the best available technique concept is demonstrated and discussed in details. Concepts and typical applications of separation methods from high vacuum to high pressure techniques is explained. (4 credits)

Hydrocarbon Technology and Catalysis

BMEVEKFA503

Dr Ákos Fürcht

To provide specialized knowledge about crude oil processing. To discuss the ecopolitical importance of crude oil, as one of the most important raw materials. To present crude oil producing technologies and discuss the refinery flow scheme. To describe the catalyst management options, which may affect the profit possibilities. (5 credits)

Process Engineering

BMEVEVMA605

Dr Endre Rév

This Process Engineering course for BSc students targets three main clusters of basic Chemical Process Modelling knowledge, namely (i) flowsheeting, i.e. calculating steady state of complex chemical processes usually with recycling streams, (ii) practical selection and use of physico-chemical models for calculating phase equilibria and phase distribution, and (iii) basic numerical methods indispensable for engineers. An outlook to process synthesis problems and techniques is also provided. (5 credits)

Radiochemistry and Nuclear Energetics

BMEVEKFA502

Dr György Pátzay

Industrial Pharmaceutics

Elucidation of Organic Structures

BMEVESAA512

Dr András Simon

Introduction into the theory of ultraviolet/visible, infrared, mass and nuclear magnetic resonance spectroscopy.. Interpretation of ultraviolet/visible, infrared, El-mass as well as one-dimensional 1H and 13C NMR spectra. Presentation of their application for the solution of practical problems. Presentation of their joint application in the elucidation of the structure of simple unknown compounds (3 credits)

Organic Chemistry III

BMEVESKA504

Dr László Poppe, Dr Gábor Hornyánszki

Based on the knowledge of subjects Organic Chemistry I and II, this subject puts major emphasis on all aspects of chemical problems associated with chiral compounds. By systematic classification of all major stereochemical terms and stereoselective syntheses, this subject adds solid knowledge to the previously acquired bases in organic chemistry for the future chemical engineers of pharmaceutical and fine chemical industry. (2 credits)

Organic Chemistry Laboratory Practice II

BMEVESKA605

Dr Gábor Hornyánszki

Students are to acquire a mastery of the methodology of lab-
isomer separation techniques and scale-up processes of the active pharmaceutical ingredients (API) based on the known technologies of Hungarian and other producers. The discussed fields are the followings: choice of the synthesis strategy, continuous development of the industrial technology from different aspects such as the environment protection, the quality assurance, the safety, the thrift and the protection of the copyright. The criteria of choosing the appropriate equipment, the technologies of the separation of APIs and their intermediates from natural raw materials (plants, animals) are presented. Aspects of the diminution of the waste products, waste treatment are also discussed. (2 credits)

Pharmaceutical Technology I.
Dr Zoltán Hell
This subject gives an overview on the characteristic methods for the industrial synthesis of active pharmaceutical ingredients (API) based on the known technologies of Hungarian and other producers. The discussed fields are the followings: choice of the synthesis strategy, continuous development of the industrial technology from different aspects such as the environment protection, the quality assurance, the safety, the thrift and the protection of the copyright. The criteria of choosing the appropriate equipment, the technologies of the separation of APIs and their intermediates from natural raw materials (plants, animals) are presented. Aspects of the diminution of the waste products, waste treatment are also discussed. (2 credits)

Project Work
Dr Antal Gajáry, Dr Alajos Grün
The aim of the subject is to present the research and development processes that result in industrial scale production. In the first half of the semester the elements and aspects of a development process are discussed. After that the students are given the opportunity to prove their skills in this field by working on a project divided into small groups (3 credits)

Technology of Pharmaceutical Materials
Dr György Marosi
The aim of the subject is to introduce the students to the technology of pharmaceutical products including the relevant theory and practice. The characteristics of the applicable pharmaceutical excipients and drug delivery systems are also discussed. Understanding of the relevant structure-activity relationships are initiated based on the characteristics of the most important manufacturing methods of different types of pharmaceutical products. The analytical methods serve the understanding of this field are also introduced. After the successful completion of the subject one should be familiar with the theoretical bases of the medicine formulation and have a basic knowledge about each step of the manufacturing of pharmaceuticals and capable of discussing with the specialists of those fields. The subject is supposed to serve as a good basis for deeper research in the relevant field or can be a core of a BSc thesis. (3 credits)

Unit processes in Industrial Drug Synthesis
Dr Ferenc Faigl
The subject deals with the typical chemical transformations, isomer separation techniques and scale-up processes of the pharmaceutical and fine chemical industries. Among the unit processes the special N-, O- and C-alkylations, C-C bond forming reactions (Claisen-, Dieckmann-, Knoevenagel- and Darzens-condensation, Vilsmeyer-formylation, reactions of polar organometalics, cross-coupling reactions), and selective reductions with inorganic and organic hydrides are discussed. The theory and methods of the separation and enrichment of optical isomers, as well as the application of dry technologies are discussed and illustrated through industrial examples (2 credits)

Unit processes in Industrial Drug Synthesis
Laboratory Practice
Dr Ferenc Faigl, Dr Zoltán Hell
In the framework of the practice typical industrial scale synthetic technologies and processes are presented for the students. The theoretical background of the unit processes applied in the presented technologies has been discussed in the lectures of ‘Unit Processes in Drug Synthesis’ which is highlighted again during the practices. (4 credits)

Unit processes in Industrial Drug Synthesis
Materials Science
Material Science Laboratory Practice
Dr Emília Csizsár
Introduction; Characterization of plastics; Fracture mechanics; Determination of mechanical properties of plastics (tensile and bending tests); Thermal characterization of polymers; Fibre reinforced polymers; Characterization of fibrous materials; Investigations of layers; Electrochemical investigation of galvanic corrosion; Investigation of diffusion kinetics; (3 credits)

Metals and Metal Matrix Composites
Dr Kornél Májliger, József Hári
During both their everyday life and professional work chemical engineers often meet a variety of traditional and modern metallic materials. The course provides important knowledge in the fields of natural science and engineering related to the production, processing and application of metallic functional materials. A further aim of the course is to present – from the perspective of materials science – the ability of metals, alloys and complex metallic matrices, as well as their associated systems, to satisfy the demands of the modern economy. (2 credits)

Modern Engineering Ceramics
Dr Alfréd Kállay-Menyhárd
During both their everyday life and professional work chemical engineers often meet a variety of traditional and modern ceramic materials. The course provides important knowledge in the fields of natural science and engineer-
Nonconventional Materials

BMEVEFAA707
Dr András Szilágyi, Dr Krisztina László, Dr Zoltá Hőrölgyi
Metal foams. Shape memory alloys and polymers, special ceramics. Complex fluids. Gels and their application in drug delivery. Self-assembly. Responsive and other special nanocoatings. Aerogels. Materials with ordered porosity. Nanotubes. The course includes laboratory work; there are 4 compulsory laboratory practical classes in the aforementioned topics. (3 credits)

Physical Chemistry of Surfaces

BMEVEKA603
Dr Krisztina László

Polymer Physics

BMEVEMGA511
Dr Béla Pukánszky

Project Work

BMEVEFAA777
Dr Alfréd Kállay-Menyhárd
The integration and application of the knowledge obtained by the students during their university studies through the design of a plant or factory manufacturing a given product. Demonstration of the complexity of problems related to the design and operation of a manufacturing plant. The course calls attention to problems rarely or not at all mentioned during other courses. The course helps students develop their ability to solve problems, make decisions and to present their results. (3 credits)

Testing Methods in Material Sciences

BMEVEMGA502
Dr Béla Pukánszky
Methods using the excitation of the lattice: Thermal analysis, IR and Raman spectroscopy; Methods for studying the structure: XRD, SEM + EDX, SPM (EC)-STM, (EC)-AFM, nanoindenter (3 credits)

Theory of Testing Methods in Material Sciences

BMEVEFAA708
Dr Mihály Kállay
Introduction (the models of molecules, crystals, liquids, amorphous materials; interaction of materials with electromagnetic radiation); infrared and Raman spectroscopy; absorption UV-Vis spectroscopy; optical and electronic properties of solids; photoelectron spectroscopy (UPS, XPS, AES); NMR spectroscopy (molecular and solid state), X-ray diffraction (crystal, liquid, small angle); microscopy (SEM, TEM, AFM). (4 credits)

Polymer Technology

Machines and Moulds for Polymer Processing

BMEVEFAA705
Péter Müller
Introduction; Extrusion: components of an extruder, operation of an extruder, extruder screws; choosing the proper screw for a polymer; Characteristics of an extruder screw and its optimal operating point, film blowing, sheet extrusion; Wire coating, profile extrusion, filament extrusion, coextrusion; Injection moulding: Tool designing, simulation software; Special injection moulding techniques: Gas and water injection, Injection moulding on films, Injection moulding on textiles; Compression moulding machines and tools; Thermoforming machines and tools; Practical work: Visits in manufacturing plants. (4 credits)

Polymer Additives

BMEVEMGA610
Dr János Móczó
Introduction; Changes taking place during the processing and application of plastics, chemical reactions, degradation, ageing; Degradation and stabilization; Light stabilization; PVC degradation and stabilization; Degradation and stabilization of other polymers; Lubricants; Fillers, surfactants, coupling agents; Polymer additives (impact modifiers, processing aids), their purpose and mechanism; Flame retardants; Blowing agents, colorants; Other additives; Further aspects of the use of additives, Additive packages, interaction of additives – PVC, polyolefins (2 credits)

Polymer Physics

BMEVEMGA511
Dr Béla Pukánszky
Textile Technology

Chemical Technology of Textiles I.
BMEVEMGA617
Dr Emília Csiszár
Preparatory processes: desizing, scouring, bleaching, carbonization; Mercerization and liquid ammonia treatment; Dyeing processes: fundamentals and methods; Textile printing; Laboratory classes: Identification of textile materials; Preparatory processes: desizing, scouring and bleaching; Dyeing of cellulosic fibres; Dyeing of wool; Dyeing of synthetic-polymer fibres; Textile printing; (7 credits)

Chemical Technology of Textiles II.
BMEVEFAA718
Dr Emília Csiszár, Dr Judit Borsa
The main goal of the course is to give basic information about the most important chemical treatments for improving functional and aesthetic properties of textiles. The course gives a detailed account of the knowledge related to textile quality, the practical aspects of quality, as well as the environmental impact of the chemical finishing processes of textiles. (4 credits)

Chemistry of Dyes and Surfactants
BMEVESTA510
Dr András Víg
Demonstration of the classification, production, chemical and technological properties and use of dyes and surfactants applied in the textile and paper industry. Discussion of the application of different dyes and surfactants in the practice by means of industrial examples. (2 credits)

Colorimetry, Colormeasurement
BMEVEMGA515
Dr Sándor Csányi
The main goals of the course are to give basic information about the colours, colour spaces, methods of colour measurement and other related topics; to offer information about the colour measuring instruments and the measurement and evaluation of whiteness. (2 credits)

Fibre Forming Polymers
BMEVEMGA512
Dr Judit Borsa
An introduction to textile chemistry and technology, understanding the various applications of fibres. (2 credits)

Project Work
BMEVEFAA777
Dr. Alfréd Kállay-Menyhárd
The integration and application of the knowledge obtained by the students during their university studies through the design of a plant or factory manufacturing a given product. The course calls attention to problems rarely or not at all mentioned during other courses. The course helps students develop their ability to solve problems, make decisions and to present their results. (3 credits)
Description of MSc Courses

Theory of Testing Methods in Material Sciences

BMEVEFAA708
Dr Mihály Kállay

Introduction (the models of molecules, crystals, liquids, amorphous materials; interaction of materials with electromagnetic radiation); infrared and Raman spectroscopy; absorption UV-Vis spectroscopy; optical and electronic properties of solids; photoelectron spectroscopy (UPS, XPS, AES); NMR spectroscopy (molecular and solid state), X-ray diffraction (crystal, liquid, small angle); microscopy (SEM, TEM, AFM). (4 credits)

Biology, biotechnology

BMEVEMBM301
Dr Miklós Pécs

The subject gives an overview of modern biotechnology by focusing on its prominent areas of chemical industrial and engineering interest. After providing an introduction of cell biology and microbiology, the subject concentrates on the possibilities of biotechnology branches termed as white and green biotechnology. Furthermore, it discusses the most important bioindustrial unit operations and environmental bio-solutions. (3 credits)

Chemical Process Design and Control

BMEVEKFM101
Dr Péter Mizsey

To teach the students the elementary knowledge of chemical process design and control. The process design step is the creative challenge of the chemical engineer. Selection/determination of the proper design alternative is a difficult task. Investigation of the controllability of the process designed is also part of the creative activity where the mutual effect of process and control should be considered. (4 credits)

Complex and Inorganic Chemistry

BMEVESAM101
Dr Ilona Kovács

The aim of the subject is to give a general knowledge in the field of the organometallic chemistry (classifications, structure, stability, reactivity) and to give more detailed information about the industrial applications of these compounds. The lectures have been structured in the traditional way – following the periodic table for the main-group element organometallics (alkali, alkali-earth, aluminum, tin, lead and silicon will be discussed in detail) and according to the nature of the ligand in transition-metal complexes. At the end of the course the industrial applied catalytic reactions (Heck, Suzuki, etc.) will be discussed. (2 credits)

Computational Chemistry

BMEVESAM301
Dr Dénes Szieberth, Tibor Hóltzl

The subject gives an overview about the principles used to describe the structure of molecules and bulk phases. The modeling of physico-chemical parameters, chemical processes will be presented together with the usual techniques. Practical examples for the solution of chemical- and physico-chemical problems by computer modeling will be done during the course. (3 credits)

Design of Experiments 2

BMEVEKFM209
Péter Kustovszki, Dr Sándor Kemény

To learn one of the most important and widely used statistical methods, the analysis of variance. To deepen the knowledge attained in the introductory course about factorial designs. (3 credits)

Environmentally Benign and Catalytic Processes

BMEVEKFM210
Dr Edit Székely

The aim of the course is to give an overview of current environmental regulations, environmentally benign and industrially applied catalytic technologies and the trends of their development from the aspect of chemical engineers. The students gain insight to selected innovative processes and technologies and develop a broader understanding of the selection of a suitable technology for a given purpose. (5 credits)

Material Science Analysis Methods

BMEVESAM202
Dr Imre Miklós Szilágyi

The course will give a broad overview on the measurement methods used in materials science involving nanotechnology, inorganic chemistry, polymers, biomaterials, organic materials. During the laboratory practices students will get both theoretical knowledge and practical experience about a large number of analytical methods and instruments. (4 credits)

Materials science: traditional structural materials and polymers

BMEVEFAM110
Dr Alfréd Kállay-Menyhárd

Materials science explores the relationship between the processing technology, the structure and the properties of materials with the aim of meeting the requirements of specific applications. The goal of the course is to offer information about the structure, properties and behaviour of the most frequently used structural and functional solid materials. The course demonstrates the importance of the design, production and shaping of materials and products through real-life examples. The course discusses in detail the structure-property correlations of plastics, metals and ceramics,
as well as structural and functional solid materials based on renewable resources. This course also highlights the important similarities and differences between the studied structural materials. (4 credits)

Organic Chemical Technology II

BMEVESZM201

Dr László Hegedűs, Dr György Keglevich

Principles of environmentally friendly chemistry and chemical technology, up-to-date methods and techniques including catalytic transformations, sonochemistry and microwave-assisted chemistry, the use of green solvents and ionic liquids, phase-transfer catalysis. All these are shown via applications in industrial syntheses together with cost optimization, up-to-date analytical and separation technologies. (5 credits)

Organic Chemistry

BMEVESZM101

Dr Péter Huszthy

The aim of the subject is to get deep insight in organic chemistry at an advanced level. (4 credits)

Physical chemistry and structural chemistry

BMEVEFAM201

Dr Mihály Kállay

The course deals with the experimental and calculation methods and the related theoretical background that provide information about the structure and properties of molecules and molecule ensembles. (5 credits)

Modern Chemical Technology

Analytical and structure determination laboratory

BMEVESAM504

Dr Imre Szilágyi, Dr Róbert E Gyurcsányi

During the laboratory practices the students will become familiar with the state-of-the-art ana-lytical and structural chemistry instruments at the disposal of the Department of Inorganic and Analytical Chemistry (and at the Faculty of Chemical Technology and Biotechnology). They will learn the basics of advanced and coupled instrumental measurement methods of quantita-tive analysis, as well as of the study and elucidation of the molecular structure. (5 credits)

Applied Electrochemistry

BMEVESAM505

Dr Lajos Hölder

This course focuses on two major fields of electrochemistry: sensors and energy storage de-vices. Students can learn about theory, development and the analytical methods of some widely used electrochemical sensors, and batteries. The discussed topics cover the thermodynamics and kinetics of these devices. Various simulation methods to describe the response mechanism are included. (3 credits)

Biocatalysis

BMEVESZM704

Dr László Poppe

The aim of the subject is to provide high-level scientific and practical knowledge to the future chemical and bioengi-

Bioinformatics 2 proteomics

BMEVESZM501

Dr László Poppe

The aim of the subject is to provide high-level scientific and practical knowledge to the future bioengineers of chemical and biological industries (pharmaceutical, fine chemical, cosmetic, food, etc.) with special emphasis on the development of prob-lem solving skills related to chemical problems by using the tools of biotechnology. (2 credits)

Bioinorganic chemistry

BMEVESAM501

Dr Julianna Oláh

During the course students get acquainted with the combination of inorganic chemistry and biochemistry, the so-called bioinorganic chemistry, which draws great attention as a complete-ly new scientific field. Topics to be discussed: the role of the elements and inorganic com-pounds in biologi-cal processes, the formation of metal containing bio-complexes, the toxicity of some inorganic compounds, bioactive compounds with inorganic ions used in pharma-ceutical chemistry. (2 credits)

Biopolymers

BMEVEFAM212

Dr Emilia Csiszár

Biopolymers are polymers produced by living organisms (e.g. microorganisms or higher-order plants and animals) or synthesized from bio-based building blocks (e.g. acids, amino acids, carbohydrates, natural triglycerides) in a chemical process. The course provides an introduction to the most significant biopolymers, their chemical structure, properties and most important applications. (4 credits)

Chemistry and Technology of Biomaterials

BMEVESZM708

Dr György Marosi

The subject aims at getting the students acquainted with the use of materials in biomedical applications, the excipients of biologically active materials, the concepts of the selection and preparation of biocompatible materials, their physi-chemical properties, and their use in the technology of medical products with special emphasis on the controlled release of drugs. The lectures include the classification of biomaterials; chemical and enzymatic reactions in relation to biomaterials (synthesis, modification and decomposi-tion), macromolecular systems of envi-ronmental technolo-gies, the relevant biodegradable polymers, macromolecular bases of pharmaceutical technologies (such as the prepara-tion of nanocapsules, implants and their ap-plication). Special emphasis is put on the manufacturing technologies of biocomposites. All of these topics are established by the relevant basic summary regarding the considerations of material science, surface modification and analytics as well as physical chemistry of smart biomaterials. The seminars promote the understanding of the interactions between dif-ferent classes of materials and many tissues of the human
body. Topics such as soft tissue replacement, biosensors, bio-devices and pharmaceuticals are included in the lectures as well. (2 credits)

Chromatography

BMEVESAM503

Dr György Horvai, Dr Viola Horváth, Dr Blanka Tóth

The basics and application fields of chromatography are presented in order to enable the students to learn method development and the use of hyphenated techniques. (3 credits)

Conventional and Modern Forms of Energy Production

BMEVEKFM302

Dr György Pátzay

The aim of the subject is to introduce the theory and practice of energy production technologies, conventional and modern forms of energy production to students. They will be informed about fossil, fissile and renewable energy sources and energy production technologies as well as about future fields of modern energy production, storage and distribution. (4 credits)

Environmental Toxicology

BMEVEBMB501

Dr Mónika Molnár, Dr Viktória Feigl

Environmental toxicology as part of the risk-based environmental management plays an increasingly important role. The main aim of the subject is to give an overview on the effect-based tools of the modern environmental risk management. The course covers both the theoretical background and the detailed practical aspects of environmental toxicology together with its applications in the risk assessment, risk management and in the environmental decision making. The topics discussed throughout the course are the following.

- The basics of environmental toxicology, qualitative and quantitative assessment of the toxicity effects of chemicals.
- The measurement of toxicity and other adverse effects, the classification of the test methods according to different aspects e.g. test-organism, size and type of tests, duration, and endpoints.
- The introduction of the most widespread related methodologies, their evaluation, statistics and interpretation. The use of ecotoxicity enables generic and site-specific risk assessment of chemicals; site- and land usage-specific assessment of contaminated land; integrated environmental monitoring: establishment of environmental quality criteria and priority setting as well as risk-based environmental management and decision making.
- Soil and soil-specific tests with emphasis on the importance of the Soil Testing Triad.
- The typical applications of the environmental toxicity testing are discussed in details and are illustrated with interactive case studies. (3 credits)

Environmentally Benign Chemical Processes

BMEVEKFM501

Dr Edit Székely, Dr László Mika, Katalin Koczka, Ildikó Kmecz

The course gives an overview of possibilities to evaluate, understand and take into account the environmental impact of various technologies. Furthermore, through case studies the best available technique concept is demonstrated and discussed in details. Concepts and typical applications of separation methods from high vacuum to high pressure techniques are explained. (4 credits)

Hydrocarbon Technology

BMEVEKFM503

Dr Iván Cresits, Dr Ákos Fürcht

To discuss the importance of crude oil, as primary energy source. To present the crude oil processing technologies and discuss the common use of the products. To describe the challenges of the oil refining business (3 credits)

Inorganic Chemistry Laboratory Practice

BMEVESZM502

Dr Zoltán Benkő, Dr Dénes Szpieberth

During laboratory exercises, physical and chemical properties of metallic and non-metallic elements and simple inorganic compounds are reviewed. Students also gain knowledge on the solubilities of the elements and inorganic salts/compounds in water, acids and bases. Typical reactions of inorganic ions are studied via simple and complex qualitative analytical exercises. (3 credits)

Medicines

BMEVESZM502

Dr Ferenc Faigl, Ervin Kovács

The subject gives an overview introduction to the medicinal chemistry and pharmacology. The fundamental pharmacological definitions and concepts as well as the historical background of drug discovery and design are presented. Selected examples of drug activity at some common target receptors demonstrate the importance of the specific receptor-drug interactions and the importance of chemical modifications of the lead molecules to produce highly selective medicines. Concepts related to pharmacokinetics are introduced, such as absorption, distribution, metabolism and excretion. (3 credits)

Modern separation technologies

BMEVEKFM104

Dr Edit Székely, Dr László Mika, Katalin Koczka, Ildikó Kmecz

The subject gives an overview of environmentally friendly processes and unit operations of the chemical, biochemical and food industries. It deals with widely applied and currently re-searched technologies as well. During the course we will focus on how the development, selection and optimisation of a novel technology are influenced by environmental aspects be-sides selectivity and improved yield. By new separation technologies, adding different modifiers, solvents, etc. are not favoured and toxic additives are one by one substituted to less harmful analogues. Modelling and design aspects will be also considered and explained through detailed description and evaluation of main application examples. (3 credits)

Nonconventional Materials

BMEVEFAM503

Dr András Szilágyi, Dr Krisztina László, Dr Zoltán Hörölgyi

Organic Chemical Technology

BMEVESZM503

Dr György Keglevich, Dr László Hegedűs
The subject discusses the main fields of organic chemical industry through many suitable ex-amples. (3 credits)

Petrochemistry

BMEVEKFM402

Dr Ákos Fürcht, Dr Iván Gresits
To provide specialised knowledge about the further pro-cessing of crude oil refinery products. To provide insight to the daily operation of petrochemical companies via several site visits. (6 credits)

Physical Chemistry of Surfaces

BMEVEFAM501

Dr Krisztina László
Fundamentals of solid/fluid interfaces. The qualitative de-scription of the surface layer, the concept of surface excess. Thermodynamics of the interfaces, surface tension and interaction potential. Interactions at solid/gas and solid/ liquid interfaces. Adsorption isotherms, their interpretation (Langmuir, BET, Dubinin-Radushkevich and DFT models). Experimental methods, including calorimetry. Fractality. Particle size analysis.
Applied surface science: the role of interfaces in materials science, environmental and industrial processes. Heteroge-neous catalysis, Pressure/Temperature Swing Adsorption. (3 credits)

Plastics

BMEVEFAM502

Dr Béla Pukánszky, Dr János Móczó
To supply basic information about plastics for chemical engineering students. Encountering plastics is unavoidable these days both in everyday life and in engineering prac-tice. The course provides the necessary basic knowledge for engineering practice, teaches ways to recognize the main sources of actual problems and offers methods to remedy them. The individual classes discuss the production, processing, behaviour and properties of plastics, as well as re-lated environmental issues. (5 credits)

Process Engineering

BMEVEKFM211

Dr Endre Rév
This Process Engineering course targets ideas and basic techniques of Process Structure Design, also called Chemi-cal Process Synthesis. The most important problems and so-lution methods of process synthesis are presented. Included are detailed discussion of energy recovery networks and mass exchange networks, distillation sequencing, energeti-cally efficient continuous rectification variants, continuous distillative separation processes applicable to azeotropic and near boiling mixtures. Optionally, depending on pro-gress, feasibility methods applicable in assigning batch distil-lation of azeotropes, as well as the most important heuris-tics of scheduling are also discussed. (4 credits)

Radiochemistry and Nuclear Energetics

BMEVEKFM502

Dr György Pátzay, Tibor Nagy, Dávid Havasi

Unit Processes of Organic Chemistry

BMEVESZM207

Dr György Keglevich, Dr Nóra Kiss
Presentation of the chemical transformations most com-monly used in the chemical industry. The environmentally friendly aspects and implementations are given special em-phasis. (2 credits)
Curriculum of MSc Subjects
Environmental Engineering

<table>
<thead>
<tr>
<th>Subject</th>
<th>Code</th>
<th>Credits</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability Theory and Statistics M1</td>
<td>4</td>
<td></td>
<td>2/2/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics K3M</td>
<td>4</td>
<td></td>
<td>3/0/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applied Chemistry</td>
<td>4</td>
<td></td>
<td>2/2/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Microbiology and Biotechnology</td>
<td>3</td>
<td></td>
<td>2/0/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Ecology</td>
<td>3</td>
<td></td>
<td>2/0/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economics</td>
<td>2</td>
<td></td>
<td>2/0/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Law</td>
<td>2</td>
<td></td>
<td>2/0/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication</td>
<td>2</td>
<td></td>
<td>2/0/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk Assessment, Recovery of Industrial and Environmental Disasters</td>
<td>3</td>
<td></td>
<td>2/0/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport Equations M11</td>
<td>4</td>
<td></td>
<td>3/1/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology Management</td>
<td>2</td>
<td></td>
<td>2/0/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Management</td>
<td>2</td>
<td></td>
<td>2/0/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Analytical Chemistry</td>
<td>3</td>
<td></td>
<td>2/0/1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design of Experiment</td>
<td>3</td>
<td></td>
<td>2/1/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green Chemistry and Catalysis</td>
<td>3</td>
<td></td>
<td>2/0/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochemical Engineering Processes and Unit Operations</td>
<td>3</td>
<td></td>
<td>2/0/2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sustainable Environmental and Natural Resource Management</td>
<td>3</td>
<td></td>
<td>2/0/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numerical Modelling of Fluid Flow in Environmental Technology</td>
<td>3</td>
<td></td>
<td>1/1/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case Studies in Environmental Impact Assessment and Auditing</td>
<td>3</td>
<td></td>
<td>1/1/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modelling of Environmental Systems</td>
<td>3</td>
<td></td>
<td>2/1/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modern Environment-friendly Transportation Systems</td>
<td></td>
<td></td>
<td>2/0/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Toxicology</td>
<td>3</td>
<td></td>
<td>2/0/1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compulsory optional subjects</td>
<td>6</td>
<td></td>
<td>6/0/0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thesis Project</td>
<td>25</td>
<td></td>
<td>0/0/25</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Curriculum of MSc Branch Subjects
Environmental Engineering

<table>
<thead>
<tr>
<th>Subject</th>
<th>Code</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branch of Environmental Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Sustainability Programs</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Environmental Marketing</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Waste Management</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Environment Management Systems</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Environmental Performance Evaluation</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Environmental Strategic Planning</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Environmental Valuation and Risk Assessment</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Spatial Development</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Branch of Environmental Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basics of Control Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Sustainable Environmental Processes</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Renewable Energy Sources</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Environmental Process Instrumentation and Control</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Surface water and Groundwater Monitoring</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Technical Acoustic and Noise Control</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Waste Management Techniques</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Case Studies in Air Pollution Control</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
The Faculty of Civil Engineering is the oldest Faculty of the Budapest University of Technology and Economics and can trace its history back to the University’s predecessor, the Institutum Geometricum, founded by Emperor Joseph II in 1782. In the past 233 years, thousands of engineers have graduated from this Faculty to work worldwide as educators, international researchers and engineering project managers.

The most essential service of the Faculty — education linked closely to research and engineering work — is reflected in the scientific activities of nearly 120 professors in 9 departments. They have contributed significantly to the scientific solution of diverse engineering problems. Out of the approximately 1800 students, who study at this Faculty, yearly 100 students from abroad participate in the English language program.

The BSc engineering program in English leads to a BSc degree in four years, in the Specialization in Structural Engineering and Specialization in Infrastructure Engineering. The program offers specific educational objectives: Graduates from the Specialization in Structural Engineering create engineering structures by utilizing and designing structural materials. They are expected to design, construct and organize the investments of mechanically, structurally and technologically complex structures in cooperation with architects and transport and hydraulics specialists. Future structural engineers who graduate from this branch will be able to design and construct, among other things, bridges and underground passages for traffic networks; power stations, cooling towers, craneways, transmission and telecommunication line structures; storehouses, industrial plants, and multi-storey buildings as well as hydraulic engineering and water supply structures. Graduates from the Specialization in Infrastructure Engineering are able to design, construct infrastructure engineering structures, such as road networks, road pavements, railway tracks, railway stations, public works and related structures, water resource management and hydraulic engineering related structures, drinking water and wastewater facilities, and organize engineering activities in the above mentioned fields.

The Faculty offers three specializations in the field of structural engineering; Specialization in Numerical Modelling, Specialization in Structures, and Specialization in Geotechnics and Geology. Specialization in Numerical Modelling provides advanced knowledge of structural analysis using advanced computer techniques, including the theoretical background of the methods. Specialization in Structures provides knowledge in structural design and skills enabling own project coordination, executing special design, construction and development procedures. The main goal of Specialization in Geotechnics and Geology is providing enhanced knowledge and skills in the field of engineering geology, geotechnics modelling, underground structures and foundations. These specializations might be useful not only for those who are interested in research and consider continuing doctoral studies, but for leading engineers of the future: practicing engineers facing special structural problems.

Departments

- Geodesy and Surveying
- Construction Materials and Technologies
- Photogrammetry and Geoinformatics
- Engineering Geology and Geotechnics
- Structural Engineering
- Structural Mechanics
- Highway and Railway Engineering
- Hydraulic and Water Resources Engineering
- Sanitary and Environmental Engineering
Curriculum of BSc in Civil Engineering

Core subjects (8 semesters)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Code</th>
<th>Credits</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>Preliminary requirement(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core subjects</td>
<td></td>
</tr>
<tr>
<td>Compulsory English 1</td>
<td>BMGET63A3E1</td>
<td>4</td>
<td>4/0/4/M</td>
<td>4/0/4/M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surveying 1</td>
<td>BMEOAFAT41</td>
<td>3</td>
<td>3/1/2/M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry of Construction Materials</td>
<td>BMEOEMAT41</td>
<td>2</td>
<td>2/2/0/M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Civil Engineering Representation and Drawing</td>
<td>BMEOEMAT42</td>
<td>4</td>
<td>4/2/2/M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAD for Civil Engineers</td>
<td>BMEOFTAT41</td>
<td>2</td>
<td>2/0/2/M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geology</td>
<td>BMEOGMAT41</td>
<td>3</td>
<td>3/1/2/E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basis of Statics and Dynamics</td>
<td>BMEOHTMAT41</td>
<td>6</td>
<td>6/0/5/E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics A1a - Calculus</td>
<td>BMETE90AX00</td>
<td>6</td>
<td>6/4/2/E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics for Civil Engineers</td>
<td>BMETE11AX13</td>
<td>2</td>
<td>2/2/0/M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compulsory English 2</td>
<td>BMGET63A3E2</td>
<td>4</td>
<td>4/0/4/M 4/0/4/M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surveying 2</td>
<td>BMEOAFAT42</td>
<td>4</td>
<td>4/2/2/E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction Materials 1</td>
<td>BMEOEMAT43</td>
<td>5</td>
<td>5/2/0/E</td>
<td>EOEMAT41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Civil Engineering Informatics</td>
<td>BMEOFTAT42</td>
<td>5</td>
<td>5/2/2/M</td>
<td>EOFTAT41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building Construction Study</td>
<td>BMEOEMAT44</td>
<td>3</td>
<td>3/1/2/E</td>
<td>EOEMAT42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Strength of Materials</td>
<td>BMEOOTMAT42</td>
<td>6</td>
<td>6/0/5/M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydraulics 1</td>
<td>BMEOVVAT41</td>
<td>3</td>
<td>3/2/1/E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics A2a - Vector Functions</td>
<td>BMETE90AX02</td>
<td>6</td>
<td>6/4/2/E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surveying Field Course</td>
<td>BMEOAFAT43</td>
<td>3</td>
<td>3/0/0/M 9 days</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil Mechanics</td>
<td>BMEOGMAT42</td>
<td>4</td>
<td>4/2/2/M</td>
<td>EOOGMAT41</td>
<td>EOOGMAT42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geoinformatics</td>
<td>BMEOFTAT43</td>
<td>3</td>
<td>3/2/1/E</td>
<td>EOOGMAT42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basis of Design</td>
<td>BMEOHSAT41</td>
<td>3</td>
<td>3/2/0/M</td>
<td>EOTMAT41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structural Analysis 1</td>
<td>BMEOOTMAT43</td>
<td>4</td>
<td>4/4/0/E</td>
<td>EOTMAT42 TE90AX00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Railway Tracks</td>
<td>BMEOUVAT41</td>
<td>3</td>
<td>3/3/0/E</td>
<td>EOOGMAT41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basics of Environmental Engineering</td>
<td>BMEOVVAT41</td>
<td>3</td>
<td>3/2/0/M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Works 1</td>
<td>BMEOVVAT42</td>
<td>3</td>
<td>3/2/1/E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrology 1</td>
<td>BMEOVVAT43</td>
<td>3</td>
<td>3/2/1/M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics A3 for Civil Engineers</td>
<td>BMETE90AX07</td>
<td>4</td>
<td>4/2/2/E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earthworks</td>
<td>BMEOGMAT43</td>
<td>3</td>
<td>3/2/1/E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steel Structures</td>
<td>BMEOHSAT42</td>
<td>3</td>
<td>3/3/0/M</td>
<td>EOTMAT42 EOGMAT42 EOGMAT43 EOGSAT41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reinforced Concrete Structures</td>
<td>BMEOHSAT43</td>
<td>3</td>
<td>3/3/3/M</td>
<td>EOTMAT42 EOGMAT42 EOGMAT43 EOGSAT41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roads</td>
<td>BMEOUVAT42</td>
<td>2</td>
<td>2/2/0/M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydraulic Engineering, Water Manag.</td>
<td>BMEOVVAT43</td>
<td>3</td>
<td>3/2/1/E</td>
<td>EOVVAT41 EOVVAT42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction Management</td>
<td>BMEEPKAT41</td>
<td>3</td>
<td>3/2/1/M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business Law</td>
<td>BMGET55A001</td>
<td>2</td>
<td>2/2/0/M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foundation Engineering</td>
<td>BMEOGMAT44</td>
<td>4</td>
<td>4/3/0/E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management and Enterprise</td>
<td>BMETE20A001</td>
<td>4</td>
<td>4/4/0/M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micro- and Macroeconomics</td>
<td>BMETE30A001</td>
<td>4</td>
<td>4/4/0/E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication Skills for Civil Engineers</td>
<td>BMETE60A6EO</td>
<td>2</td>
<td>2/0/2/M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban and Regional Development</td>
<td>BMEOUVAT43</td>
<td>3</td>
<td>3/2/0/M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective subject</td>
<td></td>
</tr>
<tr>
<td>Subject</td>
<td>Name</td>
<td>Code</td>
<td>Credits</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Specialization in Structural Engineering</td>
<td>Building Construction 1</td>
<td>BMEEOEMAS42</td>
<td>3</td>
<td>3/1/2/E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EOEMAT44</td>
</tr>
<tr>
<td></td>
<td>Timber Structures</td>
<td>BMEEOHSAS44</td>
<td>3</td>
<td>3/2/0/M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EOTMAT42 EOEMAT43 EOHSAT41</td>
</tr>
<tr>
<td></td>
<td>Strength of Materials</td>
<td>BMEOTMAS41</td>
<td>3</td>
<td>3/2/0/E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EOTMAT43</td>
</tr>
<tr>
<td></td>
<td>Construction Materials 2</td>
<td>BMEEOEMAS41</td>
<td>3</td>
<td>3/1/0/2/E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EOEMAT43</td>
</tr>
<tr>
<td></td>
<td>Building Construction 2</td>
<td>BMEEOEMAS43</td>
<td>3</td>
<td>3/1/2/E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EOEMAS42 EOHSAT41</td>
</tr>
<tr>
<td></td>
<td>Steel and Composite Structures</td>
<td>BMEEOHSAS41</td>
<td>4</td>
<td>4/2/1/M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EOHSAT42 EOHSAT43</td>
</tr>
<tr>
<td></td>
<td>RC and Masonry Structures</td>
<td>BMEEOHSAS42</td>
<td>4</td>
<td>4/2/1/M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EOHSAT43 EOEMAS42 EOTMAT43</td>
</tr>
<tr>
<td></td>
<td>Bridges and Infrastructures</td>
<td>BMEEOHSAS43</td>
<td>3</td>
<td>3/2/0/E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EOHSAT42 EOHSAT43</td>
</tr>
<tr>
<td></td>
<td>Laboratory Practice of Testing of Structures and Materials</td>
<td>BMEEOHSAS46</td>
<td>2</td>
<td>2/0/0/M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EOHSAT42 EOHSAT43</td>
</tr>
<tr>
<td></td>
<td>Structural Analysis 2</td>
<td>BMEOTMAS42</td>
<td>4</td>
<td>4/3/1/M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EOTMAT43 EOTMAS41 TE90AX07</td>
</tr>
<tr>
<td></td>
<td>Rock Mechanics</td>
<td>BMEEOGMAS41</td>
<td>3</td>
<td>3/1/1/M 3/1/1/M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EOGMAT43 EOGMAT42</td>
</tr>
<tr>
<td></td>
<td>Underground Structures, Deep Found.</td>
<td>BMEEOGMAS42</td>
<td>3</td>
<td>3/2/1/M 3/2/1/M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EOGMAT45</td>
</tr>
<tr>
<td></td>
<td>3D Conventional Modelling of Structures</td>
<td>BMEEOHSAS45</td>
<td>3</td>
<td>3/2/0/M 3/0/2/M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EOHSAT43 EOHSAT43 EOFTAT42</td>
</tr>
<tr>
<td></td>
<td>Design of Structures Projectwork</td>
<td>BMEOODHAS41</td>
<td>6</td>
<td>6/0/0/M 6/0/0/M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EOHSAS41 EOHSAS42 EOGMAT45</td>
</tr>
<tr>
<td></td>
<td>Public Administration and Land Registry</td>
<td>BMEEOUVAT44</td>
<td>3</td>
<td>3/2/0/M 3/2/0/M 3/2/0/M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>GT55A001</td>
</tr>
<tr>
<td></td>
<td>Field Course of Structural Surveys</td>
<td>BMEEOAFAS42</td>
<td>1</td>
<td>1/0/0/2/M 1/0/0/2/M 1/0/0/2/M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EOAFAT43 EOHSAT42 EOHSAT43</td>
</tr>
<tr>
<td></td>
<td>Dynamics of Structures</td>
<td>BMEOTMAS43</td>
<td>3</td>
<td>3/2/0/M 3/2/0/M 3/2/0/M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EOTMAT43 TE90AX07</td>
</tr>
<tr>
<td></td>
<td>Technical Internship</td>
<td>BMEODHAS42</td>
<td>0</td>
<td>0/0/0/S 0/0/0/S 0/0/0/S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EOHSAS41 EOHSAS42 EOGMAT45</td>
</tr>
<tr>
<td></td>
<td>Reinforced Concrete Buildings</td>
<td>BMEEOHSA-A2</td>
<td>5</td>
<td>5/3/1/E 5/3/1/E 5/3/1/E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EOHSAS42 EOHSAS44</td>
</tr>
<tr>
<td></td>
<td>Methodology of Building Construction Design</td>
<td>BMEEOHMA-A1</td>
<td>2</td>
<td>2/1/1/E 2/1/1/E 2/1/1/E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EOEMAS43</td>
</tr>
<tr>
<td></td>
<td>Engineering Works</td>
<td>BMEEOHSA-B3</td>
<td>3</td>
<td>3/2/0/E 3/2/0/E 3/2/0/E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EOHSAT43 EOHSAS43 EOGMAS42</td>
</tr>
<tr>
<td></td>
<td>Structural Design Projectwork</td>
<td>BMEEOHSA-PP</td>
<td>6</td>
<td>6/0/0/M 6/0/0/M 6/0/0/M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EOHSAS41 EOHSAT42 EOHSAT43</td>
</tr>
<tr>
<td></td>
<td>Diploma Project</td>
<td>BMEOODHA-PD</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Curriculum of BSc in Civil Engineering
Specialization in Infrastructure Engineering

<table>
<thead>
<tr>
<th>Subject</th>
<th>Code</th>
<th>Name</th>
<th>Preliminary requirement(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrastructure CAD Course</td>
<td>BMEEOUVAI45</td>
<td>BMEEOUVAI45</td>
<td>EOUVAT41 EOVKAT42 EOVFAI43</td>
</tr>
<tr>
<td>Water Chemistry and Hydrobiology</td>
<td>BMEEOVKAI43</td>
<td>BMEEOVKAI43</td>
<td>EOVKAT41</td>
</tr>
<tr>
<td>Legal Aspects of Water and Environment</td>
<td>BMEEOVKAI45</td>
<td>BMEEOVKAI45</td>
<td>EOVVAT42</td>
</tr>
<tr>
<td>Hydraulics 2</td>
<td>BMEEOVVAI42</td>
<td>BMEEOVVAI42</td>
<td>EOVVAT42</td>
</tr>
<tr>
<td>Highway and Railway Structures</td>
<td>BMEEOUVAI41</td>
<td>BMEEOUVAI41</td>
<td>EOUVAT41 EOVUAT42 EOVFAI43</td>
</tr>
<tr>
<td>Highway and Railway Design</td>
<td>BMEEOUVAI43</td>
<td>BMEEOUVAI43</td>
<td>EOUVAT41 EOVUAT42 EOVFAI43</td>
</tr>
<tr>
<td>Public Works 2</td>
<td>BMEEOVKAI41</td>
<td>BMEEOVKAI41</td>
<td>EOVKAT41</td>
</tr>
<tr>
<td>Urban Environment</td>
<td>BMEEOVKAI42</td>
<td>BMEEOVKAI42</td>
<td>EOVKAT41</td>
</tr>
<tr>
<td>Water Quality Management</td>
<td>BMEEOVKAI44</td>
<td>BMEEOVKAI44</td>
<td>EOVKAI43 EOVVAI42</td>
</tr>
<tr>
<td>Hydrology 2</td>
<td>BMEEOVVAI41</td>
<td>BMEEOVVAI41</td>
<td>EOVKAT41</td>
</tr>
<tr>
<td>Transportation Networks</td>
<td>BMEEOUVAI42</td>
<td>BMEEOUVAI42</td>
<td>EOUVAT42</td>
</tr>
<tr>
<td>Highway and Railway Laboratory Course</td>
<td>BMEEOUVAI44</td>
<td>BMEEOUVAI44</td>
<td>EOUVAT41</td>
</tr>
<tr>
<td>Water Resources Management</td>
<td>BMEEOUVAI43</td>
<td>BMEEOUVAI43</td>
<td>EOVKAI43 EOVVAT43</td>
</tr>
<tr>
<td>Hydraulic Engineering Field Course</td>
<td>BMEEOVVAI44</td>
<td>BMEEOVVAI44</td>
<td>EOVVAT42</td>
</tr>
<tr>
<td>Infrastructure Design Project</td>
<td>BMEEODHAI41</td>
<td>BMEEODHAI41</td>
<td>EOUVAT43 EOUVKAI43 EOVKAI41</td>
</tr>
<tr>
<td>Public Administration and Land Registry</td>
<td>BMEEOUVAT44</td>
<td>BMEEOUVAT44</td>
<td>GT55A001</td>
</tr>
<tr>
<td>Earthworks and Drainage of Transportation</td>
<td>BMEEOCMAI41</td>
<td>BMEEOCMAI41</td>
<td>EOVVAT43 EOVKAT41</td>
</tr>
<tr>
<td>Technical Internship</td>
<td>BMEEODHAI42</td>
<td>BMEEODHAI42</td>
<td>EOVVAT43 EOVVAT43 EOVKAI42</td>
</tr>
<tr>
<td>Highway Planning and Design</td>
<td>BMEEOUVA-E1</td>
<td>BMEEOUVA-E1</td>
<td>EOUVAT43</td>
</tr>
<tr>
<td>Water Damage Prevention and Water Use</td>
<td>BMEEOVVA-F1</td>
<td>BMEEOVVA-F1</td>
<td>EOVVAT43 EOVVAT43 EOVKAI42</td>
</tr>
<tr>
<td>Drinking Water and Wastewater Treatment</td>
<td>BMEEOVKA-H1</td>
<td>BMEEOVKA-H1</td>
<td>EOVKAI41</td>
</tr>
<tr>
<td>Railway Planning and Design</td>
<td>BMEEOUVA-E2</td>
<td>BMEEOUVA-E2</td>
<td>EOUVAT43</td>
</tr>
<tr>
<td>River Basin Management</td>
<td>BMEEOUVA-F2</td>
<td>BMEEOUVA-F2</td>
<td>EOUVAT43 EOVKAI44</td>
</tr>
<tr>
<td>Environmental Impact Assessment</td>
<td>BMEEOVKA-H3</td>
<td>BMEEOVKA-H3</td>
<td>EOUVAT43 EOVKAI44 EOVKAI45</td>
</tr>
<tr>
<td>Transportation Facility Design Project</td>
<td>BMEEOUVA-QP</td>
<td>BMEEOUVA-QP</td>
<td>EOUVA-E2</td>
</tr>
<tr>
<td>Hydraulic Engineering Design Project</td>
<td>BMEEOVVA-QP</td>
<td>BMEEOVVA-QP</td>
<td>EOUVA-F1</td>
</tr>
<tr>
<td>Urban Water Infrastructure Design Project</td>
<td>BMEEOVKA-QP</td>
<td>BMEEOVKA-QP</td>
<td>EOUVA-H1</td>
</tr>
<tr>
<td>Diploma Project</td>
<td>BMEEODHA-QD</td>
<td>BMEEODHA-QD</td>
<td>EOUVA-QP EOVVA-QP EOVK-QP</td>
</tr>
</tbody>
</table>

EOUVA-QP *EOVVA-QP* *EOVK-QP*
Curriculum of MSc in Civil Engineering
Structural Engineering

<table>
<thead>
<tr>
<th>Name</th>
<th>Code</th>
<th>Credits</th>
<th>Lectures/practical lectures/laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core subjects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Mathematics</td>
<td>BMETE90MX33</td>
<td>3</td>
<td>2/1/0/E</td>
</tr>
<tr>
<td>Physics Laboratory</td>
<td>BMETE11MX22</td>
<td>1</td>
<td>0/0/1/M</td>
</tr>
<tr>
<td>Methods of Engineering Analysis</td>
<td>BMEEOHSMK51</td>
<td>3</td>
<td>1/1/0/M</td>
</tr>
<tr>
<td>Numerical Methods</td>
<td>BMEEOFTMK51</td>
<td>4</td>
<td>0/0/3/M</td>
</tr>
<tr>
<td>Geodynamics</td>
<td>BMEEOGMM51</td>
<td>3</td>
<td>2/0/0/M</td>
</tr>
<tr>
<td>FEM for Civil Engineers</td>
<td>BMEEOTMMS51</td>
<td>5</td>
<td>2/2/0/E</td>
</tr>
<tr>
<td>Soil-structure interaction</td>
<td>BMEEOGMM52</td>
<td>5</td>
<td>3/1/0/M</td>
</tr>
<tr>
<td>Structures 1</td>
<td>BMEEOHSM51</td>
<td>5</td>
<td>3/1/0/E</td>
</tr>
<tr>
<td>Numerical modeling project</td>
<td>BMEEOTMMS5P</td>
<td>5</td>
<td>0/0/2/M</td>
</tr>
<tr>
<td>Decision Supporting Methods</td>
<td>BMEEPEKMST4</td>
<td>2</td>
<td>2/0/0/M</td>
</tr>
<tr>
<td>Corporate Finance</td>
<td>BMEGT35M11</td>
<td>2</td>
<td>2/0/0/M</td>
</tr>
<tr>
<td>Engineering Ethics</td>
<td>BMEGT41M004</td>
<td>2</td>
<td>2/0/0/M</td>
</tr>
<tr>
<td>Specialization in Numerical Modelling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obligatory Subjects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structural Dynamics</td>
<td>BMEEOTMMN-1</td>
<td>4</td>
<td>2/1/0/M</td>
</tr>
<tr>
<td>Stability of Structures</td>
<td>BMEEOHSMT-2</td>
<td>4</td>
<td>2/1/0/E</td>
</tr>
<tr>
<td>Nonlinear Mechanics</td>
<td>BMEEOTMMN-2</td>
<td>4</td>
<td>2/1/0/E</td>
</tr>
<tr>
<td>Diploma Project</td>
<td>BMEEODHMN-D</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Recommended elective subjects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plasticity</td>
<td>BMEEOTMMN61</td>
<td>3</td>
<td>1/1/0/M</td>
</tr>
<tr>
<td>Nonlinear FEM</td>
<td>BMEEOTMMN62</td>
<td>3</td>
<td>2/0/0/M</td>
</tr>
<tr>
<td>Analysis of Rods and Frames</td>
<td>BMEEOTMMN63</td>
<td>3</td>
<td>1/1/0/M</td>
</tr>
<tr>
<td>Discrete Element Method</td>
<td>BMEEOTMMN64</td>
<td>3</td>
<td>1/1/0/M</td>
</tr>
<tr>
<td>Specialization in Structures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obligatory Subjects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structures 2</td>
<td>BMEEOHSMT-1</td>
<td>4</td>
<td>2/1/0/E</td>
</tr>
<tr>
<td>Stability of Structures</td>
<td>BMEEOHSMT-2</td>
<td>4</td>
<td>2/1/0/E</td>
</tr>
<tr>
<td>Seismic Design</td>
<td>BMEEOHSMT-3</td>
<td>4</td>
<td>2/1/0/M</td>
</tr>
<tr>
<td>Structural Dynamics</td>
<td>BMEEOTMMN-1</td>
<td>4</td>
<td>2/1/0/M</td>
</tr>
<tr>
<td>Diploma Project</td>
<td>BMEEODHM-D</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Recommended elective subjects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applied Fracture Mechanics</td>
<td>BMEEOHSMT61</td>
<td>4</td>
<td>2/1/0/M</td>
</tr>
<tr>
<td>Prestressing Technologies</td>
<td>BMEEOHSMT62</td>
<td>3</td>
<td>1/1/0/M</td>
</tr>
<tr>
<td>Strengthening of Structures</td>
<td>BMEEOHSMT63</td>
<td>3</td>
<td>1/1/0/M</td>
</tr>
<tr>
<td>Specialization in Geotechnics and Geology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Geology MSc</td>
<td>BMEEOGMMG-1</td>
<td>4</td>
<td>2/1/0/E</td>
</tr>
<tr>
<td>Environmental Geology</td>
<td>BMEEOGMMG-2</td>
<td>4</td>
<td>2/1/0/M</td>
</tr>
<tr>
<td>Geotechnical Design</td>
<td>BMEEOGMMG-3</td>
<td>4</td>
<td>2/1/0/M</td>
</tr>
<tr>
<td>Earthworks of Infrastructures</td>
<td>BMEEOGMMG-4</td>
<td>4</td>
<td>2/1/0/M</td>
</tr>
<tr>
<td>Diploma Project</td>
<td>BMEEODHM-D</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Recommended elective subjects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tunneling</td>
<td>BMEEOGMMG61</td>
<td>3</td>
<td>2/0/0/M</td>
</tr>
<tr>
<td>Hydrogeology</td>
<td>BMEEOGMMG62</td>
<td>3</td>
<td>2/0/0/M</td>
</tr>
<tr>
<td>Numerical Methods in Geotechnics</td>
<td>BMEEOGMMG63</td>
<td>3</td>
<td>1/0/1/M</td>
</tr>
<tr>
<td>Engineering Geology of Hungary</td>
<td>BMEEOGMMG64</td>
<td>3</td>
<td>2/0/0/M</td>
</tr>
</tbody>
</table>
Description of BSc Courses
Civil engineering BSc - Major in Structural Engineering

Compulsory English 1.

BMEGT63A3E1

The course is designed to enable students to communicate fluently and effectively in study environment. Receptive, productive and interactive activities and strategies are included in the curricula. (4 credits)

Surveying 1.

BMEEOAFAT41

Chemistry of Construction Materials

BMEEOEMAT41

Civil Engineering Representation and Drawing

BMEEOEMAT42

3 main parts of the subject: 1. Descriptive geometry 2. Engineering drawing 3. Freehand drawing. 1. Basics of descriptive geometry course modules: Students gain knowledge and skills in regularities and techniques of descriptive geometry, developing spacial reasoning. Topics: basic constructions in planes of projections, transformations, tasks of intersections, intersections and interpenetrations of plane and curved solids, cast shadows, construction in scale, special revolution solids and skew surfaces. Additional representation systems: dimensioned representations, orthogonal axonometry, perspective projection. 2. Engineering drawing course modules: Students gain knowledge and skills in engineering drawing, specific notations, proportions and scale, magnification, minification, construction of ground plans and sections. 3. Engineering free-hand representation course modules: develop free-hand drawing in scale. (4 credits)

CAD for Civil Engineers

BMEEOFTAT41

Besides an overview on CAD systems and application fields, students will learn the 2D drawing commands that enable carrying out basic design tasks. Layer management, block definition and applying annotations and dimensions are discussed in detail. Learning printing options and parameters supports further design works in the BSc civil engineering program. The aim of the course is to let students understand the potential and capabilities of CAD systems and their applications. The course introduces the basic spatial drawing solutions providing bases for high level courses involving 3D constructions, BIM applications. (2 credits)

Geology

BMEEOGMAT41

The geology provides the characterisation of geological formations and materials from a civil engineering point of view. It describes the processes and the interactions between the engineering works and the geological environment. The dynamics of the Earth, the description of raw materials and geo-materials used in engineering practice (minerals and rocks), the geological risks such as earthquakes, volcanism, landslides and their effect, characterisation of surface and subsurface waters and related geological problems. (3 credits)

Basis of Statics and Dynamics

BMEOTMAT41

Mathematics A1a - Calculus

BMET90AX00

Algebra of vectors in plane and in space. Arithmetic of complex numbers. Infinite sequences. Limit of a function, some important limits. Continuity. Differentiation: rules, derivatives of elementary functions. Mean value theorems, l’Hospital’s rule, Taylor theorem. Curve sketching for a func-
tion, local and absolute extrema. Integration: properties of the Riemann integral, Newton-Leibniz theorem, antiderivatives, integration by parts, integration by substitution. Integration in special classes of functions. Improper integrals. Applications of the integral. (6 credits)

Physics for Civil Engineers

BMETE11AX13

Compulsory English 2.

BMEGT63A3E2

The courses are designed to enable students to communicate fluently and effectively in study environment. Receptive, productive and interactive activities and strategies are included in the curricula. By the end of the semester the overall language ability of the students is at level B2 (by the Common European Framework of Reference (4 credits)

Surveying II.

BMEOAFAT42

Properties of analogue and digital maps, the application of maps in engineering practice. Traversing, the types of traverse lines. Localizing blunder in traverse lines: the linear and angular error. Offset surveys. The determination of the horizontal and vertical positions of detail points: the tacheometry. The contact potential, its application in surveying. Topographic surveys: reconnaissance, sketch, detail survey and mapping. Free stationing. The principles of computational adjustments, the law of error propagation. Construction tolerances and the fundamental of geometrical quality control. Horizontal and vertical deformation monitoring. Setting out straight lines, curves, transition curves and points in a given elevation. The global navigation satellite systems (GPS, GLONASS, Galileo, ...) and their application in surveying. Building surveys. The localization of underground public utilities. Mapping public utilities and the public utility register. (4 credits)

Construction Materials I.

BMEEOMAT43

Civil Engineering Informatics

BMEEOFTAT42

The course gives an overview on the major areas of informatics, on the components of information technology systems. Besides supporting the labs, some practical problems and particular tasks are also discussed on the lectures. On the labs, students use spreadsheet application to solve different tasks, then learn the basics of numerical and non-numerical methods in mathematical software environment. Students also learn the basics of programming; most of the tasks have to be solved by own scripts, routines, programs. Civil engineering informatics discusses 2D and 3D computer graphics and the basics of database management that supports high level courses involving spatial construction and database systems. (5 credits)

Soil Mechanics

BMEEOGMAT42

Origin of soils, soil exploration, soil samples. Components of soils (phase relationships, grain size distribution, consistency limits), soil classification, compaction. Stresses in the soil (under static conditions, conditions of steady vertical flow). Flow of water through soil due gravity (Darcy’s law, coefficient of permeability, flow nets). Compressibility of soil (reasons and types of compression). Shear strength of soil (Mohr-Coulomb failure criterion, determination of shear strength). (4 credits)

Introduction to Strength of Materials

BMEEOTMAT42

Internal forces and internal force diagrams of planar and spatial structures (revision, generalization). Moments of inertia and principal directions of planar figures. Strength properties of materials. Concept of stresses and deformations. Material models: linearly elastic material and linearly elastic and perfectly plastic material. Beam element, beam model composed of elastically connected cross-sections. Computation of normal stresses in beams for centric tension/compression, simple bending, skew bending, and tension/compression combined with bending. Computation of shear stresses in beams for pure shearing, torsion, and shearing combined with bending. Eccentric compression of cross-sections of no tension materials. Shear centre of thin-walled cross-sections. Displacements of bent beams with straight axis. Principal stresses and principal directions. (6 credits)

Hydraulics I.

BMEEOVVAT42

Mathematics A2a - Vector Functions
BMETE90AX02

Surveying Field Course
BMEOAFAT43
Using the theoretical background of the courses Surveying 1 & 2 students are required to: assess the existing datasets used for mapping; define the necessary surveying activities; practice the surveying observations, planning, data processing and documentation; practice profile boarding, setting out of roads; learn to use modern surveying instruments (total stations, GPS/GNSS receivers, electronic levels, digital photography). (3 credits)

Building Construction Study
BMEOEMAT44

Geoinformatics
BMEOOFTAT43
The aim of Geoinformatics is to introduce the principles and potential application fields of geographic information systems (GIS) in the civil engineering practice. The course discusses the basic concepts and applications of GIS, the modelling process needed to create GIS, the reference systems of geometric data, the spatial data sources and data acquisition methods, the aspects of data quality, the resources, tools, databases of GIS, the basics of data analysis, visualization and implementation of GIS. Through the lectures and labs students learn the GIS workflow based on desktop and web-based solutions, and tools of spatial process modelling, data management and web integration. (3 credits)

Basis of Design
BMEOH5SAT41

Structural Analysis I.
BMEOOTMAT43

Railway Tracks
BMEOOUVAT41
Basic concepts of the railway tracks and vehicles, most important technical parameters. Features of normal railways, suburban railways, urban railways, classification of different types of railways. Speed, acceleration, changing of acceleration. Horizontal and vertical alignment of the railway tracks, straights, circular curves and transition curves, superelevation, vertical curves. Elements of the substructure and superstructure. Rails, sleepers, rail fastenings, ballast, subgrade, strengthening of the subgrade. Setting out major and detail points of curves and transition curves. Structures and solutions of dewatering and drainage of railway tracks. Basic concepts of conventional and continuously welded rail tracks. Types of turnouts and simple track connections. Basic concepts of railway stations, platforms, passenger access. (3 credits)

Basics of Environmental Engineering
BMEOOVKAT41
The aim of the course is to provide basic scientific and engineering background for further studies in environmental engineering by giving introduction to the following subjects: basics of ecology, the natural cycle of ecologically important elements and substances, the environmental effects of human activities, the ecological footprint, energy consumption patterns and energy production technologies, renewable energy sources. Selected environmental problems associated with civil engineering activities (water, air and soil pollution), with focus on the urban environment. Tools and methods for conducting environmental impact assessment. (3 credits)
Public Works I.

BMEEOVKAT42

The main goal of the subject is to provide information about the most important features of the public works. The subject also includes investigating connections between different public works and other establishments. Further aim is to provide knowledge for the future general designers and technical managers to make the right decisions on the underground infrastructure of settlements. Main scopes are: system knowledge and design of different public work types like water acquisition, drinking water supply, waste water networks, storm water networks and public works asset management. (3 credits)

Hydrology I.

BMEEOVAT41

Mathematics A3 for Civil Engineers

BMETE90AX07

Earthworks

BMEEOGMAT43

Steel Structures

BMEEOHSAT42

Lectures of Steel Structures have the general aim to study the basics of the design of steel structures, which consists of the design of simple structural members, simple joints and the investigation of the basic failure phenomenon, which can occur in steel structures. The program consists of the following topics:

Reinforced Concrete Structures

BMEEOHSAT43

Structural safety of reinforced concrete (RC) structures; loads and effects on RC structures, material properties of concrete and reinforcing steel; moment-curvature relation of RC cross sections; Un-cracked and cracked cross section; flexural strength theory, strength and ductility; design of RC cross section; eccentric compression; shear failure in beams without and with shear reinforcement; strength in bending and torsion; anchorage and stress development, bar curtailment; deflection and crack width. (3 credits)

Roads

BMEEOUVAT42

Hydraulic Engineering, Water Manag.

BMEEOUVAT43

The tasks, methods and tools of water management. Hungarian and European specialities of water management. Types and tasks of hydraulic engineering structures with the following topics: Watershed management of lowland and hilly areas, regulation of lakes and rivers, reservoirs and storage, flood control and land drainage, inland navigation, water power development, water intake and pumping stations, small hydraulic engineering structures, characteristic environmental impacts of hydraulic engineering structures. During the practical lessons four design works will be elaborated. (3 credits)

Construction Management

BMEEEPEKAT41

Curricula, themes, individual projects, tests, subjects of lectures and seminars of the Course are embracing managerial and organizational learnings useful and necessary for all civil engineers, such as:
- jobs and organizational structure of Contracting Construction Trade; - jobs and relations of partner collaborating in executing construction projects; - time and resource needs of executing construction projects (basic methods and terms of time-, resource- and cost estimates); - basics of mechanizing Construction, construction equipments and auxiliary plants, typical applications; - organizing construction site (site layout designs).
Individual project: Organizational plans (time estimates, resources calculations and site layout designs) of building a simple linear structure (reinforced concrete retaining wall) well known in practice of all civil engineers. (3 credits)
Business Law

BMEGT55A001

The problems of the area will be treated in two major parts. Part One introduces students to the general topics, for example the concept of law, the functions of the law in the socioeconomic life. Some basic legal problems, like the conception, characteristics and functions of the modern state and, in a comparative view, the characteristics of the Anglo-Saxon and continental systems of business law and the development of the Hungarian business law will be also discussed. The emphasis of Part Two is on the questions of company law and competition law presented in a European context. The lectures of this part outline not only the regulations of the Hungarian Company Act and Company Registry Act but they cover EU directives and regulations on companies and competition as well. (2 credits)

Foundation Engineering

BMEEOGMAT44

Management and Enterprise

BMEGT20A001

Intended for engineering students who would like a better conceptual understanding of the role of management in the decision making process. This course introduces the essentials of management as they apply within the contemporary work environment. Particular attention is paid to management theories, corporate finance, leadership, teamwork, quality management, management of technology, economics calculation and operations management. For problem formulation both the managerial interpretation and the mathematical techniques are applied. (4 credits)

Micro- and Macroeconomics

BMEGT30A001

Communication Skills for Civil Engineers

BMEGT60A6EO

The Communication Skills course is designed to meet the language needs of civil engineering students in academic and professional fields. Special emphasis is on the language of meetings and discussions, oral presentation and summary writing. (2 credits)

Urban and Regional Development

BMEEOUVAT43

Branch of Structural Engineering

Building Construction I.

BMEEOEMAS42

Students gain knowledge and skills during the semester work in the following topics: Flat and deep foundations, relation to sub-soil insulation of buildings. Masonry works, prefabricated panel systems. Plasters and ETICS. Reinforced concrete, steel and wooden beam slab constructions. Stairs. High roofs. Passable and non-passable flat roofs, green roofs. Insulations against functional water. (3 credits)

Timber Structures

BMEEOHAS44

Strength of Materials

BMEEOOTMAS41

Differential equation of the elastic curve, computation of the deflected shape for various boundary conditions. Virtual displacement systems, virtual work. Theorem of virtual displacements. Computation of external and internal forces of statically determinate structures using the theorem of virtual displacements. Concept of potential energy, theorem of stationarity of potential energy, application of the theorem for the computation of displacements of structures. Concept of complementary potential, theorem of minimum complementary potential energy, using the theorem for the computation of reactions of structures. Revision of common work and energy theorems of mechanics. Characterization
of equilibrium states, concept of critical load. Methods of stability analysis: statical, kinematical, and energy methods. Elastic Euler buckling. (3 credits)

Construction Materials II.

BMEEOEMAS41

Building Construction II.

BMEEOEMAS43

Steel and Composite Structures

BMEEOHSAS41

Design specialities of plated steel girders: plate and web buckling phenomena and design according Eurocodes. Design of steel structural members subjected to bending and axial compression – interaction formulae according EC3. Simple joints in steel structures – structural behaviour and design. Structural behaviour of steel and concrete composite members; design of composite beams and columns according EC4. (4 credits)

RC and Masonry Structures

BMEEOHSAS42

Design principles of reinforced concrete slab and frame structures, exact and approximate design methods, structural details. Bracing systems of reinforced concrete buildings, determination of the forces acting to the individual shear walls, checking of stability. Detailing of reinforced concrete structures (beam end, corbel, frame corner, curved bars, stairs, force transfer between members, expansion joints, etc.). Types and strength characteristics of masonry. Design principles of unreinforced masonry walls according to EC6. Reinforced masonry walls. (4 credits)

Bridges and Infrastructures

BMEEOHSAS43

Laboratory Practice of Testing of Structures and Materials

BMEEOHSAS46

Experimental demonstration the behaviour of the loaded structural members and joints made from different materials (steel, reinforced or prestressed concrete, composite, glass...). Introduction into different experimental and measurement techniques and equipments. Up-to-date building materials and material testing methods. General and specific analytical and diagnostic methods for building materials and structures. (2 credits)

Structural Analysis II.

BMEEOTMAS42

Rock Mechanics

BMEEOGMAS41

Petrophysical properties of solid rocks, the characterisation of rock blocks and rock masses, the jointing system in the rock environment. The deformation processes and rheological characters in rock mechanics, the influence of joint spacing. The durability and effect of rock environment on the engineering structures. The evaluation of geological conditions in rock environment at tunnels foundations and rocky slopes. The influence of material properties on the petrophysical properties of rocks. (3 credits)

Underground Structures, Deep Found.

BMEEOGMAS42

Types and field of application of deep foundations (stone columns, diaphragm walls). Load transfer mechanism of deep foundations. Determination the bearing capacity and settlement by different methods (by theoretical formulas, load tests, sounding). Design and construction of Pedestrian subways, Underground garages. Analysis against uplift. Insulations. (3 credits)
3D constrictional modelling of structures
BMEEOHSA-S45
The aim of the course is to introduce the 3 dimensional detailing of steel-, reinforce concrete- and timber structures to the students. The course intends to develop basic practical skills by real 3D modelling of structures where the model is able to provide drawings and lists automatically for fabrication and construction processes. The course provides insight into the integration of the 3D constrictional model of structures with other branches like architectural, mechanical, electrical and plumbing models into a BIM (Building Information Modelling) model. The students will learn the necessary knowledge and also obtain experience for the later project home works and diploma works by the help of presentations, small examples and a modelling home work. (3 credits)

Design of Structures Projectwork
BMEEOODHAS41
Students need to accomplish a complex design project work that is based on the knowledge gained through the branch courses. The project work is supervised by three lecturers from three areas of structural engineering. (6 credits)

Public Administration and Land Registry
BMEEOUVAT44

Field Course of Structural Geodesy
BMEEOOAFSA-S42
The main purpose of the subject is introduce the most modern techniques and methods for students in the field of state surveying and movement detection of civil engineering structures. The students apply the skills and knowledges learned in Surveying I, II and Field Course of Surveying to solve more complex structural engineering projects. Project are solved by students team. During the practices students survey some inner parts of a more leveled building, determine the geometry of axis of an about 30 m high brick chimney. Furthermore they determine the deflections of a slab and the distortions of floor. They determine the deflection of a cable bridge caused by traffic. They are introduced into the applications of photogrammetry, remote sensing and laserscanning in the area of construction engineering. (1 credit)

Dynamics of Structures
BMEEOOTMAS43

Industrial Practice
BMEEOODHAS42
20 days of industrial practice at a civil engineering construction company. (0 credits)

Major of Buildings

Steel Buildings
BMEEOHSA-A1

Reinforced Concrete Buildings
BMEEOHSA-A2

Building Construction Methodology
BMEEOEMA-A1
During the semester methodology of planning, methods of design of building constructions are presented. Listing of requirements depend on function of building (building physical, acoustical point of views and fire protection). Designation of structural hierarchy based on the determined requirements. Building constructional relationship and design rules: i) skirtings - connections of load-bearing structures ii) structures of floors (floors on ground, floors of general slabs) - connections of load-bearing structures iii) facade - connections of load-bearing structures iv) thermal insulation and rainwater seepage, soil moisture and waterproofing - connections of load-bearing structures v) special...
building constructions (windows, doors, gates), structures of fire protection (skylights, suspended walls against tume spreading). (2 credits)

Engineering Works

BMEEOHSA-B3

The basis of the design and construction of engineering works is presented. The discussion holds on the waterproofing of reinforced concrete structures with watertight concrete, on the thermal effects and on the description of independent strains of concrete structures. The use of cast-in-place and precast concrete in engineering works is presented. Some other modules: modelling the soil and structure interaction. Design aspects of pools, tanks and tower-like structures. Internal forces and reinforcements of typical structural elements of engineering works: rectangular, circular and ring plates, walls, wallbeams, box-like and shell structures. Dynamics of tower-line structures: wind effects and seismic action, dampers, wind turbines. (3 credits)

Building Design Projectwork

BMEEOHSA-AP

Students need to accomplish a complex projectwork that is based on the major subjects. Students need to regularly attend consultations and get support from the supervisor(s). (6 credits)

Description of MSc Courses

MSc in Structural Engineering

Advanced Mathematics

BMETE90MX33

Physics Laboratory

BMETE11MX22

Methods of Engineering Analysis

BMEEOHSMK51

The objective of the course is that the student shall understand and be aware of the principles and basis of methods of engineering analysis and assessments, statistics, probability theory, reliability analysis, numerical methods, risk analysis, optimization and digital sign processing. It also serves as the basis of the subsequent MSc subjects on modelling, design and programming. (3 credits)

Numerical Methods

BMEEOFTMK51

The aim of this course is that students learn and apply skill level at solving engineering problems numerically on computers, as well as to introduce the basics of Building Information Modelling (BIM). At the beginning of the semester BIM systems and their application opportunities are introduced, later the principles of the most relevant numerical techniques including their advantages, disadvantages and applicability are presented during laboratory practices. Students may learn and apply mathematical procedures suitable for solving and visualizing technical problems on computer practices. A further purpose of this course is to prepare the students for later independent research. (4 credits)

Building Physics

BMEOEMMS51

The aim of the subject is that the students get to know the basics of modern building physics, the theory of the heat conduction, convection, heat radiation, heat transport processes, the technical alternatives of the heat loss reduction of buildings and building constructions, the role of outdoor and indoor environment-related boundary conditions in building physical calculations and the method of determining these parameters, the analytical calculations of the of heat transport, the theory and practical application of non-steady-state, transient, non-linear and multi-dimensional heat transport processes, as well as conjugated heat-moisture and air transport simulations, and basics of city-scale building-physics. (3 credits)

Geodynamics

BMEEOGMM51

The subject focuses on the understanding of dynamic effects that are transferred from the geological environment to the engineering structures. The students are getting familiar with geophysics, rock stress and its interpretation and graphic representation, local and world-scale (Word Stress Map). The deformations caused by seismic waves in igneous, metamorphic and sedimentary rocks also form part of the subject, as well as deformations caused by historic earthquakes. A main topic is the understanding of the Earth’s
structural geology and seismicity with special emphasis on the Carpathian basin. The lectures will help in learning the detection methods of seismic waves and acquire the information content of the seismograms. By completing the course the students will be able to determine the parameters that are necessary for appropriate seismic design. Engineering seismological approach will help the students to place the structures in the geological environment allowing the minimal risk and reducing the cost by proper seismic design. (3 credits)

Materials’ science for civil engineers
BMEEOGMMSS2
Main objective of this subject is to learn a wide range of special material properties used for structural design. Within this subject special material properties and material processes are taught including: definition of performance based material properties, role of micro-structure of materials to their properties, related physical-chemical processes, possibilities in modelling, relationship of sustainability – durability – service life, possibilities of nanotechnology in civil engineering, possibilities in reuse and recycling in civil engineering. (3 credits)

FEM for Civil Engineers
BMEEOOTMSS51
The goal of the subject is to present the theoretical bases of the finite element method and its practical application to typical structural engineering problems. The classic approach to the finite element method will be followed in presenting the basic idea of the method, the element types, the applied interpolation functions, the various matrices and the basic steps of their construction, the resulting system of equation and the solution techniques of it. All these will be demonstrated and practiced through examples, showing how the various structure types (trusses, beams, frames, plates, shells, 3D solids) can be analysed. An introduction to nonlinearities from various sources will be given, with special focus on the effect and handling of geometric nonlinearity. Beside the static problems, the application of the finite element method to some heat transfer problems of the structural engineering practice will also be discussed. (5 credits)

Soil-structure interaction
BMEEOGMMSS52
The scope of the subject is to teach the students the fundamentals of geotechnics required for structural design, such as familiarity with and use of EC7. These include geotechnical categorization; types and contents of geotechnical documentations; geotechnical and structural design of piles for different loading types, design of soil-supported ground slabs along with the determination of the values of subgrade reaction modulus; design of pile-supported ground slabs and “rigid inclusion” slabs; structural design of excavation support structures, determination of soil reaction moduli along with their effect on deformations and internal forces; design of ground anchors; geotechnical questions of bridge abutments; and the basics of soil dynamics and geotechnical earthquake engineering. (5 credits)

Numerical modeling project
BMEEOOTMSS5P
The goal of the subject is that the students solve a civil engineering problem the complexity of which is in accordance with the level of the MSc course and with the credit and time-frame of the subject. The problem should be solved by high level application of some analytical or numerical method (e.g., finite element method). The problem is solved by the individual work of the student, helped by a tutor. (5 credits)

Structures project
BMEEOHSMSS5P
The objective of the course is that the student shall solve a structure-specific problem, by which his/her problem solving skills are improved, gains the skill of literature review, aims the comprehensive thinking. Aim is that the student becomes able to efficiently solve problems arising during design or research tasks. The subject of the study can be any structure-related problem discussed and agreed with the supervisor; not exclusively: modelling, analysis and/or design of part of or whole structural system, experimental analysis; research, research and development or expert design task; based on individual problem statement or joining to ongoing research program. (5 credits)

Geotechnical and engineering geological project
BMEEOGMMSS5P
The goal of the subject, that the students are getting familiar with the geotechnical and engineering geological design process. The students get to know through a project work the geotechnical, engineering geological data collection, modelling, design and calculation tasks. Furthermore, they get familiar with practical application of analytical and numerical design methods. (5 credits)

Decision Supporting Methods
BMEEEPKEKMST4
The aim of the course is to familiarize students with some practically used or usable mathematical models in the field of construction management, scheduling and tendering process. The course covers a wide variety of topics dealing with least cost scheduling problems, multi attribute decision models, learning curves. There are two computational modeling tasks as homework assignments. Final grades will be based on the two assigned tasks 15-15% and test 70%. (2 credits)

Accounting, Controlling, Taxation
BMEGT35M014
The main issues of ‘window dressing’ and their interpretation through financial ratio analysis and interpretation. The cost volume profit analysis and its relationship with costing and pricing decision-making. The operational and capital budgetary process in an international context and its advisory role through the process of variance analysis. The best international accounting practice both at the functional,
planning and strategic stages. The wider developmental strategic and ethical international issues concerned with managerial accounting. (2 credits)

Engineering Ethics
BMEGT41M004
The purpose of this course is to help future engineers be prepared for confronting and resolving ethical issues that they might encounter during their professional careers. It gives an overview of the moral problems engineers face in their different social roles, and it provides conceptual tools and methods necessary for pursuing these issues. Topics include engineering professionalism; social roles of engineers; ethical theories; ethical decision making techniques; social impacts of engineering, professional organizations; code of ethics of engineering societies. Case studies are discussed in a practice oriented approach. The primary goal is to stimulate critical and responsible reflection on moral issues surrounding engineering practice. (2 credits)

Structural Dynamics
BMEEOHSMT-2
The purpose of the course is that students become familiar with the dynamic tasks occurring in the structural engineering practice, and the mechanical-mathematical background of their solution methods. There will be emphasized: the differential equations used to describe the continuum of mechanical vibration and their analytical and numerical solution methods, free vibration of multiple degrees of freedom systems and its approximate solutions, computation methods of mass and stiffness matrix of the (finite element method) discretized structures, taking into account the damping, dynamic issues supporting effect of the soil, the mechanical background of earthquake analysis of structures and the effect of wind. (4 credits)

Stability of Structures
BMEEOHSMN-2
The objective of the subject is the presentation of the most important problems in the stability analysis and stability design of steel structures. The student will learn the terminology of theory of engineering stability and theory of torsion of thin-walled members, as well as their practical importance and applicability. The most relevant modes of instabilities of engineering steel structures will be presented (flexural buckling, flexural-torsional buckling, lateral-torsional buckling, plate buckling). To each instability mode the student will learn the background and mathematical bases, as well as the Eurocode design procedures and their practical applications. (4 credits)

Nonlinear Mechanics
BMEEOHTMMN-2
The subject is the continuation of the Strength of Materials subjects taught in the Civil Engineering BSc programme on the expansion and the generalization of its linear models. Its two main goals are:
A./ the students will become acquainted with the approaches of nonlinear mechanics, its variables used in theoretical and numerical modeling, and the principal equations required for the formulation of nonlinear mechanical problems. The application of various nonlinear strain and stress tensors is analysed, furthermore the origination of the equations in the form of a general boundary and/or initial value problem or as a variational problem form the most important types of engineering structures.
B./ The second important goal is to get to know the theoretical background required for the - primarily finite element - analysis of nonlinear problems, with an emphasis on the theoretical and practical differences between the linear and nonlinear analysis. (4 credits)

Plasticity
BMEOTMMN61
The purpose of the subject is, that the students acquire the basic concepts and methods of plasticity. In the frame of this they will get to know the material models, yield and hardening conditions of plasticity. The torsion problem of prismatic bars, and planar problems of solids will be learnt through examples and applications. There will be an emphasis given to the plastic load bearing capacity of elasto-plastic frame structure, and their limit states. (3 credits)

Nonlinear FEM
BMEOTMMN62
The main goal in this subject is, that the students get to know the solution with the finite element method (FEM) of the nonlinear mechanical problems typical in engineering practice, alongside with the mathematical background of the solutions. The specialties of one- and multidimensional problems will be discussed. There will be interpreted the nonlinear behaviour of the most important structures (beams, frames, plates, shells) from the practical use, with a focus on the important questions about the effect of large displacements and plastic deformations. Beyond the general nonlinearity the students will learn the special techniques (finite strip method, finite volume method, boundary element method, meshfree methods, smooth and finite particle methods, etc.). As an organic part of the course, students will analyse case studies solved by computer simulation, in order to deeper understand the modeling techniques of various nonlinearities and connect theory and practice. (3 credits)

Analysis of Rods and Frames
BMEOTMMN63
The goal of the subject is to get students to know the modeling possibilities of rod structures appearing in the structural engineering practice, the theoretical background of the models. Based on the linear mechanical model of the generalized beam element students will be acquainted with the calculation of the stiffness matrix and load vector of frame structures and their generalizations e.g. trusses, grids, and infilled frames. Higher-order analysis of kinematically indeterminate structures with high importance in engineering practice will be learnt. (3 credits)

Discrete Element Method
BMEOTMMN64
The goal of the subject is to get students to know the basics of the concept and methodology of the discrete element methods (DEM) occurring in the structural engineering practice, and allow an insight to the operation of a discrete element software. Students will learn the most important variations DEM, th applied equations of motion, their numeric solution methods with the limits of applicability, advantages and disadvantages. Students will analyse the model of a simple engineering problem. (3 credits)
Structures 2
BMEEOHSMT-1

The objective of the subject is the presentation of the hazards, structural reliability and their role in structural design. The behaviour of complex structures, curved steel and concrete shells, 3D truss structures and their design are introduced. The most important analytical solutions and the basics and assumptions of numerical solutions are presented. Additionally, the design methods of cable and membrane structures are concluded in the subject. (4 credits)

Stability of Structures
BMEEOHSMT-2

The objective of the subject is the presentation of the most important problems in the stability analysis and stability design of steel structures. The student will learn the terminology of theory of engineering stability and theory of torsion of thin-walled members, as well as their practical importance and applicability. The most relevant modes of instabilities of engineering steel structures will be presented (flexural buckling, flexural-torsional buckling, lateral-torsional buckling, plate buckling). To each instability mode the student will learn the background and mathematical bases, as well as the Eurocode design procedures and their practical applications. (4 credits)

Seismic Design
BMEEOHSMT-3

The objective of the course is that the student shall understand the description and characterization of seismic effects and consequences, shall be aware of the basic principles of vibration analysis, behaviour, analysis and design of single and multi degree of freedom elastic or elasto-plastic structural systems, simplified modelling techniques of structures, principles of design regulations and codes, behaviour and design methods of quasi-elastic and dissipative structures. (4 credits)

Applied Fracture Mechanics
BMEEOHSMT61

The objective of the subject is the presentation of the basic theories and methods of fracture mechanics, and their application in the field of civil engineering. The basic definitions of fracture mechanics and their mathematical representation, and the basic calculation methods are also introduced. The design methods in Eurocode based on fracture mechanics are presented. (4 credits)

Prestressing Technologies
BMEEOHSMT62

The objective of the subject is the presentation of the prestressed structures and its design procedures. The main types of prestressed structures, applied materials and prestressing technologies are introduced. The effect of prestressing for the design procedures is discussed. Special prestressed structural systems and prestressing technologies for bridges are also presented. The Eurocode based design procedures and their practical application are showed. (3 credits)

Strengthening of Structures
BMEEOHSMT63

The objective of the subject is the presentation of the diagnostic of existing structures with different materials and structural systems, the possible causes of structural damages, methods of reinforcement and the most common building materials. According to this, the tools and steps of the diagnostic of existing structures, the verification of the structure’s load bearing capacity, the basic principles of qualification, the required content of expertise, the methods of reconstruction and reinforcement, the most common ways of structural damages (direct and indirect) and the different structural systems of existing residential buildings are presented during the semester. Case studies are also introduced. (3 credits)

Engineering Geology MSc
BMEEOGMMG-1

The goal of the subject, that the students get familiar with the physical properties of the main type of rocks. It is introducing to the students the most common types of landslide problems, their solutions, the risk analysis in the field of engineering geology, the importance of the in-situ stresses in the rock mechanical design. The students get to know the theoretical background of the rock mass classification systems, the relations between the different rock mass classification systems. They learn to use these systems for rock engineering design in normal and weak rock masses. With the completion of the subject they learn to use the introduced design methods and case studies examples. (4 credits)

Environmental Geology
BMEEOGMMG-2

The students are getting familiar with the pollution sources that endanger environment and understand the mitigation methods. The subject provides information on the transport mechanism of pollutants in subsurface area and the conditions that influence their dispersion. The studied topics include the legal regulation of environmental geological surveys and the geological constraints of environmental impact assessment of existing and planned engineering structures. By studying remediation techniques the course leads a better understanding of various methods of pollutant removal from the geological environment. Special focus area is mining related pollution and site remediation. Waste disposal and pollution control also form important parts of the course. The exercise classes help students to learn environmental geological practice that helps in the sustainable operation and design of engineering structures. The course provides perspectives in environmental pollution reduction and in cost effective mitigation of polluted sites. (4 credits)

Geotechnical Design
BMEEOGMMG-3

The goal of this course is to acquire knowledge of the basics of geotechnical design, geotechnical approaches according to Eurocode 7, requirements of the contents of infrastructural and structural plans, methodology of soil borings and complex laboratory tests, evaluation of in-situ tests results, design optimization of large-scale geotechnical projects, soil anchor and soil nail design, jet-grouting technology and its design, design and qualification of subgrades and subbases, design of monitoring systems and design based on observation. (4 credits)

Earthworks of Infrastructures
BMEEOGMMG-4

The aim of the course is that the students understand the geotechnical aspects of infrastructures’ earthworks. In this course the student gets to know the effect of earthquakes on subsoil and earthworks (damages, stability calculation, liquefaction, case studies, failures), the concepts of embank-
ment construction on soft soils (primary consolidation, secondary compression, wick drains, vibroflotation, dynamic compaction, dynamic replacement, staged construction), design, construction and control of soil and rock dams and flood protection dikes, and calculation of quick condition and sandpiping. (4 credits)

Tunneling

BMEEOGMMG61
The goal of this course is to teach the most important segments of the tunnel design and the construction. The course is focus on the frequently used tunneling technics and calculation methods in both soil and rock environment. During the semester the student calculates the most important stresses on the tunnel, using both numerical and analytical methods. The tunnel designs are shown in a detailed both the construction and operation system, as well. (3 credits)

Hydrogeology

BMEEOGMMG62
The goal of the subject, that the students getting familiar with the geological, geophysical methods of water exploration, the stratigraphy of ground, karstic and fissure water, the origin and properties of ground water (temperature, chemical nature). The students acquire the methodology for recharge, water flow, infiltration calculations, furthermore the water level and discharge measurements, water tracing and modelling the water flow in karstic and jointed rock mass. They learn the properties, classification and usage of thermal water. The subject introduce to the students the regional water management, the hydrogeological effect of mining and civil engineering, protecting of water resources through case studies. They get information about the de-watering methods and learn the usage of hydrogeological models for civil engineering works. (3 credits)

Numerical Methods in Geotechnics

BMEEOGMMG63
The aim of the course is that the students get to know the use of numerical methods that aid the geotechnical and engineering geological design. The students get familiar with the advantages and disadvantages of analytical methods and applications of finite element methods to geotechnical and engineering geological problems by using different commercially available software. The students get to know the special elements and material models that are typically used in case of FE modelling of geotechnical problems. The students get to know the most frequently used rock mechanical methods for modelling fractured rocks. (3 credits)

Engineering Geology of Hungary

BMEEOGMMG64
The goal of the subject, that the students getting familiar with the main geological regions of Hungary and gain the required regional and local geological knowledge for engineering design and operate of facilities. Furthermore it is also an important additional part of the course to present knowledge about the main geological structures of Hungary, the location of the most important soils and rocks, the surface-forming processes with anthropogenic effects, the most important relief forms caused by flowing water, wind. Introduces to the students the karstic landforms, and the surface forming effect of mining, road, railway and other civil engineering constructions. Furthermore the subject give comparison between the Hungarian and well-known international geological units and landforms. (3 credits)
FACULTY OF ELECTRICAL ENGINEERING AND INFORMATICS
The Faculty of Electrical Engineering founded in 1949 has been renowned for excellence in research and education throughout the years of changes in the scope of engineering. Over this period, the faculty has earned a wide-spread international reputation for its high academic standards and scientific achievements. Spearheading the movement to establish a modern education system, it has offered a comprehensive English curriculum since 1984. In 1992 the name of the faculty was changed to Faculty of Electrical Engineering and Informatics in order to give recognition to the growing importance of computer science. The education programmes in English include a 3.5-year BSc, a 2-year MSc and a 3-year PhD programme in the fields of electrical engineering and Computer Engineering.

This Bulletin describes the curricula and the subjects being available for the 2016/2017 academic year, regarding the BSc, MSc and PhD programmes, respectively.

The undergraduate **BSc programme** (7 semesters) aims at providing a comprehensive knowledge with sound theoretical foundations in two areas: (1) Electrical Engineering including more specific studies in electronics, computer engineering and power engineering; and (2) Computer Engineering dedicated to the major domains of computer science. The major specializations in Electrical Engineering are infocommunication systems, embedded and controller systems and sustainable electric energetics. Studies in Computer Engineering include specialization in infocommunications and software engineering. Each specialization contains four courses focusing on the field of interest followed by a laboratory course and a project laboratory. In order to pursue studies in a given specialization the number of students must exceed a certain threshold, otherwise the interested students are kindly directed to another specialization.

The **MSc programme** (4 semesters) advances the knowledge in the following fields: (1) Electrical Engineering, offering specializations in (i) embedded systems, (ii) multimedia systems and services, and (iii) electric power systems; and (2) Computer Engineering, offering specializations in (i) applied informatics, and (ii) internet architecture and services.

The post-graduate **PhD programme** is available in all domains offered in the MSc programme. Since research and development requires innovative engineering expertise, one of the major concerns of the faculty is to endow students with high level mathematical skills in modeling complex engineering systems. This objective implies the use of system and algorithmic theory in addition to a thorough knowledge in physics. The search for optimal solutions in the highly complex architectures of electrical engineering and Computer Engineering necessitates not only engineering but economical considerations, as well. As a result, the scope of the programme must include design, research and management expertise at the same time.

Several strategies have been designed to help students develop high level skills in mathematics, physics, and computation. Besides theoretical knowledge they need to carry out design and development activities in the field of communication, instrumentation, and power industries to further perfect their practical skills. The curriculum also includes solving tasks in the fields of production and operation.

Scientific groups are formed to encourage the students to do independent but supervised laboratory work. Project laboratory is one of the core parts of the studies which are dedicated to independent problem solving with the armoury of modern work stations and software packages. The expertise of handling these tools are inevitable in pursuing an engineering career.

In order to strengthen the transfer of knowledge and know-how between the university and industry, the faculty maintains close contact with well known multinational companies in the field of communication and computer industry. As a result, many industrial experts offer their experience and knowledge as part-time lecturers, project supervisors, members of examination committees.

Admission policy

To maintain a high educational standard is the basic interest of both the university and the students. Only a constant guard of quality can ensure that tuition fee is traded for a degree of high reputation bearing a competitive value in the global market. Therefore, the priority of our acceptance policy is sustaining the quality of education by selecting those students whose knowledge and previous qualifications are in match with the expertise required by the courses. This rule holds for all applicants, no matter the country or the educational institutions they came from. Only the implementation of this acceptance policy helps us to preserve the value of the degree, which the students rightly deserve in exchange of their tuition fee and in exchange of their continuous effort committed during the course. In order to implement the principles, our faculty has adopted the following terms of acceptance:
Practical guidelines for acceptance to the MSc programme

1. Applicants with BSc studies having a WGAP (Weighted Grade Average Point) equal or better than ‘good’ (more than 3.51 out of 5.00) will receive acceptance to the MSc course.

2. Applicants with a BSc qualification less than ‘good’ (less than 3.50 out of 5.00) are regretfully rejected to enter the MSc program.

3. Applicants should also submit two recommendations given by renowned academic personnel.

Practical guidelines for acceptance to the PhD programme

1. The primary condition of admission to postgraduate studies is that the applicant must hold a Master of Science (or Engineering) degree in Electrical and Electronic Engineering (or in some closely related fields) or Informatics. Admission to postgraduate studies will be considered if the qualification of previous studies is at least of level “good” (more than 3.51 out of 5.00) or equivalent.

2. Applicants are expected to have a definite scope of research in electrical engineering or computer science, where they would like to advance their knowledge. They are requested to present a proposal, specifying a domain of interest with some research objectives, milestones and deliverables during the postgraduate studies. The suggested topic should have sufficient preliminaries in their university studies.

3. Applicants with experience and initial results in the suggested research topic will have preference. A short summary of preliminary research activities together with relevant reports, published papers ... etc. would be of help in the admission process.

4. Applicants should also submit two recommendations given by renowned academic personnel.

Each admission is valid only for the forthcoming academic year (starting right after the letter of acceptance). In the case of commencing studies later than the semester indicated in the letter of acceptance, or returning to studies after a passive semester, the faculty does not take responsibility for ensuring that the students can follow the same specialization which he or she studied prior to the passive semester, and reserves the right to direct the student to other specialization depending on the changes in the number applicants for specializations.

Departments

Automation and Applied Informatics
Electronics Technology
Electron Devices
Department of Networked Systems and Services
Control Engineering and Information Technology
Measurement and Information Systems

Computer Science and Information Theory
Broadband Infocommunications and Electromagnetic Theory
Telecommunications and Media Informatics
Electric Power Engineering

Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics
Faculty Office:
Building R, ground floor, room No. 001
Mailing Address: Műegyetem rkp. 7-9,
H-1111 Budapest, Hungary
Phone: (+36-1) 463-4609
Fax: (+36-1) 463-2550
E-mail: nagy-margit@mail.bme.hu

Dean of the Faculty: Dr. László Jakab
Vice-Dean of the Faculty:
Prof. Dr. János Levendovszky
Course Director: Dr. Eszter Udvary
Programme Co-ordinator: Ms. Margit Nagy
Curriculum of BSc Subjects in Electrical Engineering

<table>
<thead>
<tr>
<th>Subject</th>
<th>lectures/practical lectures/laboratory</th>
<th>Requisities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamentals in Natural Sciences (48 credits)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics A1</td>
<td>TE90AX00</td>
<td>6</td>
</tr>
<tr>
<td>Mathematics A2</td>
<td>TE90AX26</td>
<td>6</td>
</tr>
<tr>
<td>Comprehensive exam on mathematics A1&A2</td>
<td>TE90AX16</td>
<td>0</td>
</tr>
<tr>
<td>Mathematics A3</td>
<td>TE90AX09</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics A4</td>
<td>TE90AX51</td>
<td>4</td>
</tr>
<tr>
<td>Physics 1</td>
<td>TE11AX21</td>
<td>4</td>
</tr>
<tr>
<td>Physics 2</td>
<td>TE11AX22</td>
<td>4</td>
</tr>
<tr>
<td>Foundation of computer science</td>
<td>VISZA02</td>
<td>4</td>
</tr>
<tr>
<td>Informatics 1</td>
<td>VIHAB04</td>
<td>5</td>
</tr>
<tr>
<td>Informatics 2</td>
<td>VIAUAB01</td>
<td>5</td>
</tr>
<tr>
<td>Electronics technology and materials</td>
<td>VIETAB00</td>
<td>6</td>
</tr>
<tr>
<td>Mathematics (20 credits)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micro- and macroeconomics</td>
<td>GT30A001</td>
<td>4</td>
</tr>
<tr>
<td>Management and business economics</td>
<td>GT20A001</td>
<td>4</td>
</tr>
<tr>
<td>Business law</td>
<td>GT55A001</td>
<td>2</td>
</tr>
<tr>
<td>Economics elective 1, 2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Mandatory humanities & economics</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Core electrical engineering knowledge (89 credits)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basics of programming 1</td>
<td>VIHAA01</td>
<td>7</td>
</tr>
<tr>
<td>Basics of programming 2</td>
<td>VIAUAA00</td>
<td>7</td>
</tr>
<tr>
<td>Digital design 1</td>
<td>VIHAA01</td>
<td>5</td>
</tr>
<tr>
<td>Digital design 2</td>
<td>VIHAA02</td>
<td>5</td>
</tr>
<tr>
<td>Signals and systems 1</td>
<td>VIHVA00</td>
<td>6</td>
</tr>
<tr>
<td>Signals and systems 2</td>
<td>VIHVA01</td>
<td>6</td>
</tr>
<tr>
<td>Electrotechnics</td>
<td>VIHVE00</td>
<td>5</td>
</tr>
<tr>
<td>Introduction to electromagnetic fields</td>
<td>VIHVE00</td>
<td>4</td>
</tr>
<tr>
<td>Electronics 1</td>
<td>VIHIA02</td>
<td>5</td>
</tr>
<tr>
<td>Electronics 2</td>
<td>VIAUAC05</td>
<td>5</td>
</tr>
<tr>
<td>Measurement technology</td>
<td>VIHIB01</td>
<td>5</td>
</tr>
<tr>
<td>Control engineering</td>
<td>VIHAB05</td>
<td>5</td>
</tr>
<tr>
<td>Telecommunication</td>
<td>VIHAB03</td>
<td>5</td>
</tr>
<tr>
<td>Power engineering</td>
<td>VIHVE01</td>
<td>5</td>
</tr>
<tr>
<td>Microelectronics</td>
<td>VIHVE00</td>
<td>5</td>
</tr>
<tr>
<td>Laboratory 1</td>
<td>VIHAC05</td>
<td>5</td>
</tr>
<tr>
<td>Laboratory 2</td>
<td>VIHAC07</td>
<td>4</td>
</tr>
<tr>
<td>Study specialization blocks (43 credits)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specialization subject 1</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Specialization subject 2</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Specialization subject 3</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Specialization subject 4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Specialization laboratory</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Design laboratory</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Project laboratory</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>BSc theses work</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Free electives (10 credits)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free elective 1, 2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Free elective 3</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Free elective 4</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Free elective 5</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum of hours per week</td>
<td>18/8/3</td>
<td>19/8/2</td>
</tr>
<tr>
<td>Sum of credits per semester</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

x/y/z/e/ce/m/s: x: contact hours of lectures per week, y: contact hours of classroom practices per week, z: contact hours of laboratory exercises per week, e: examination, ce: comprehensive exam, m: mid-semester mark, s: signature; credit: credit value according to ECTS – 1 credit represents 30 work hours (on average)

1. 10 credits of free electives could be substituted by any subjects available
2. Students should note that due to the early scheduling of the thesis defense session for students applying to MSc studies, the period for examination could be rather limited in the 7th semester

70
Specializations
List of available specialization blocks depends on the number of students wanting to join. At least power engineering will be available. List of subjects are published on the website.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Code</th>
<th>Credits</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>Requisities</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUSTAINABLE ELECTRIC ENERGETICS specialization</td>
<td></td>
</tr>
<tr>
<td>Electric power transmission</td>
<td>BMEVIVEAC00</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/1/0/e</td>
</tr>
<tr>
<td>Electrical machines and applications</td>
<td>BMEVIVEAC01</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/1/0/e</td>
</tr>
<tr>
<td>Electrical equipment and insulations</td>
<td>BMEVIVEAC02</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/1/0/e</td>
</tr>
<tr>
<td>Control of electric drives</td>
<td>BMEVIVEAC04</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/1/0/e</td>
</tr>
<tr>
<td>Sustainable electric energetics laboratory</td>
<td>BMEVIVEAC04</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0/0/3/m</td>
</tr>
<tr>
<td>EMBEDDED AND CONTROL SYSTEMS specialization</td>
<td></td>
</tr>
<tr>
<td>Embedded and ambient systems</td>
<td>BMEVIAUAC06</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/1/0/e</td>
</tr>
<tr>
<td>Industrial control</td>
<td>BMEVIIAC03</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/1/0/e</td>
</tr>
<tr>
<td>Microcontroller based systems</td>
<td>BMEVIAUAC06</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/1/0/e</td>
</tr>
<tr>
<td>Embedded operating systems and client</td>
<td>BMEVIAUAC07</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/1/0/e</td>
</tr>
<tr>
<td>Embedded and control systems lab.</td>
<td>BMEVIAUAC07</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0/0/3/m</td>
</tr>
<tr>
<td>INFOCOMMUNICATION SYSTEMS specialization</td>
<td></td>
</tr>
<tr>
<td>Space Technology</td>
<td>BMEVIHVAC05</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/1/0/e</td>
</tr>
<tr>
<td>Network Technologies and Applications</td>
<td>BMEVIHMAC05</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/1/0/e</td>
</tr>
<tr>
<td>Mobile Comm. Systems</td>
<td>BMEVIHC04</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/1/0/e</td>
</tr>
<tr>
<td>High Frequency System Techniques</td>
<td>BMEVIHVAC04</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/1/0/e</td>
</tr>
<tr>
<td>Radio Systems and Applications lab.</td>
<td>BMEVIHVAC06</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0/0/3/m</td>
</tr>
</tbody>
</table>
Curriculum of BSc Subjects in Computer Engineering

<table>
<thead>
<tr>
<th>Subject</th>
<th>lectures/practical lectures/laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamentals in Natural Sciences (40 credits)</td>
<td></td>
</tr>
<tr>
<td>Calculus 1 for informaticians</td>
<td>TE90AX21 6 4/2/0/e</td>
</tr>
<tr>
<td>Calculus 2 for informaticians</td>
<td>TE90AX22 6 4/2/0/m</td>
</tr>
<tr>
<td>Comprehensive exam in Calculus 1&2 for informaticians</td>
<td>TE90AX20 0 0/0/e</td>
</tr>
<tr>
<td>Probability theory</td>
<td>VISZAB00 4 2/2/e</td>
</tr>
<tr>
<td>Introduction to the theory of computing 1</td>
<td>VISZAA00 4 2/2/e</td>
</tr>
<tr>
<td>Introduction to the theory of computing 2</td>
<td>VISZAA01 4 2/2/e</td>
</tr>
<tr>
<td>Coding technology</td>
<td>VIHIAB00 4 3/0/e</td>
</tr>
<tr>
<td>Theory of algorithms</td>
<td>VISZAB01 4 2/2/e</td>
</tr>
<tr>
<td>Physics 1i</td>
<td>TE11AX23 4 3/1/e</td>
</tr>
<tr>
<td>Physics 2i</td>
<td>TE11AX24 4 3/1/e</td>
</tr>
<tr>
<td>Economics and humanities (20 credits)</td>
<td></td>
</tr>
<tr>
<td>Micro- and macroeconomics</td>
<td>GT30A001 4 4/0/e</td>
</tr>
<tr>
<td>Management and business economics</td>
<td>GT20A001 4 4/0/m</td>
</tr>
<tr>
<td>Business law</td>
<td>GT55A001 4 2/0/m</td>
</tr>
<tr>
<td>Economics elective 1</td>
<td>2 2/0/m</td>
</tr>
<tr>
<td>Mandatory humanities & economics elective 2</td>
<td>2 2/0/m</td>
</tr>
<tr>
<td>Mandatory humanities & economics elective 3</td>
<td>2 2/0/m</td>
</tr>
<tr>
<td>Mandatory humanities & economics elective 4, 5</td>
<td>2 2/0/m</td>
</tr>
<tr>
<td>Core IT engineering knowledge (97 credits)</td>
<td></td>
</tr>
<tr>
<td>System theory</td>
<td>VIHVAB00 4 1/1/m</td>
</tr>
<tr>
<td>Technology of IT devices</td>
<td>VIIEAC00 4 3/1/m</td>
</tr>
<tr>
<td>Digital design</td>
<td>VIIMA01 7 3/1/e</td>
</tr>
<tr>
<td>System modelling</td>
<td>VIIMA01 4 3/1/m</td>
</tr>
<tr>
<td>Computer architectures</td>
<td>VIIMA00 5 3/1/e</td>
</tr>
<tr>
<td>Communication networks 1</td>
<td>VIHB01 4 3/1/e</td>
</tr>
<tr>
<td>Communication networks 2</td>
<td>VIHMA01 4 3/1/e</td>
</tr>
<tr>
<td>Operating systems</td>
<td>VIHB00 5 3/1/e</td>
</tr>
<tr>
<td>Basics of programming 1</td>
<td>VIIEA00 7 2/2/m</td>
</tr>
<tr>
<td>Basics of programming 2</td>
<td>VIIB00 7 2/2/m</td>
</tr>
<tr>
<td>Basics of programming 3</td>
<td>VIIB00 5 2/2/m</td>
</tr>
<tr>
<td>Databases</td>
<td>VIHMA00 5 3/1/e</td>
</tr>
<tr>
<td>Databases laboratory</td>
<td>VIHMA02 2 0/2/m</td>
</tr>
<tr>
<td>Software technology</td>
<td>VIHB01 4 3/1/e</td>
</tr>
<tr>
<td>Software techniques</td>
<td>VIUAB00 5 2/0/e</td>
</tr>
<tr>
<td>Software project laboratory</td>
<td>VIIB02 2 0/2/m</td>
</tr>
<tr>
<td>Web and mobile software</td>
<td>VIUAC00 5 3/1/e</td>
</tr>
<tr>
<td>Computer graphics</td>
<td>VIIB03 4 3/0/m</td>
</tr>
<tr>
<td>Artificial intelligence</td>
<td>VIIMAC00 4 3/0/m</td>
</tr>
<tr>
<td>IT security</td>
<td>VIHMAC01 3 3/0/m</td>
</tr>
<tr>
<td>Management of information systems</td>
<td>VIUMAC02 4 3/0/m</td>
</tr>
<tr>
<td>Restricted electives</td>
<td>3 3/0/m</td>
</tr>
<tr>
<td>Study specialization blocks (43 credits)</td>
<td></td>
</tr>
<tr>
<td>Specialization subject 1</td>
<td>4 3/1/e</td>
</tr>
<tr>
<td>Specialization subject 2</td>
<td>4 3/1/e</td>
</tr>
<tr>
<td>Specialization subject 3</td>
<td>4 3/1/e</td>
</tr>
<tr>
<td>Specialization subject 4</td>
<td>4 3/1/e</td>
</tr>
<tr>
<td>Specialization laboratory 1, 2</td>
<td>2 0/2/m 0/2/m</td>
</tr>
<tr>
<td>Design laboratory</td>
<td>general 3 0/2/m</td>
</tr>
<tr>
<td>Project laboratory</td>
<td>general 5 0/3/m</td>
</tr>
<tr>
<td>BSc theses work</td>
<td>general 0/10/m</td>
</tr>
<tr>
<td>Free electives (10 credits)</td>
<td></td>
</tr>
<tr>
<td>Free elective 1, 2</td>
<td>4 4/0/e 2/0/m</td>
</tr>
<tr>
<td>Free elective 3</td>
<td>2 2/0/m</td>
</tr>
<tr>
<td>Free elective 4</td>
<td>2 2/0/m</td>
</tr>
</tbody>
</table>

1. **Restricted electives**: These are electives that students must choose to complete their degree requirements. They are subject to specific restrictions and must be chosen from the list provided.

2. **Free electives**: These are electives that students can choose from any area of study, as long as they meet the credit requirements for their degree program. They provide flexibility in choosing courses that align with personal interests or career goals.
<table>
<thead>
<tr>
<th>Subject</th>
<th>Code</th>
<th>Credits</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>Requisities</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOFTWARE ENGINEERING specialization</td>
<td>Data-driven systems</td>
<td>BMEVIAUAC01</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/1/0/e</td>
</tr>
<tr>
<td></td>
<td>Object-oriented software design</td>
<td>BMEVIBAC00</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/1/0/e</td>
</tr>
<tr>
<td></td>
<td>Integration & verification techniques</td>
<td>BMEVIMIAC04</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/1/0/e</td>
</tr>
<tr>
<td></td>
<td>Client side technologies</td>
<td>BMEVIAUAC02</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/1/0/e</td>
</tr>
<tr>
<td></td>
<td>Software development laboratory 1</td>
<td>BMEVIAUAC03</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0/0/2/m</td>
</tr>
<tr>
<td></td>
<td>Software development laboratory 2</td>
<td>BMEVIAUAD00</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0/0/2/m</td>
</tr>
<tr>
<td>INFOCOMMUNICATIONS specialization</td>
<td>Mobile communication networks</td>
<td>BMEVIIHAC00</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/1/0/e</td>
</tr>
<tr>
<td></td>
<td>Building and operation of networks</td>
<td>BMEVITMAC00</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/1/0/e</td>
</tr>
<tr>
<td></td>
<td>Media applications & networks in practice</td>
<td>BMEVITMAC00</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/1/0/e</td>
</tr>
<tr>
<td></td>
<td>Networked resource platforms & apps</td>
<td>BMEVITMAC00</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/1/0/e</td>
</tr>
<tr>
<td></td>
<td>Infocommunication laboratory 1</td>
<td>BMEVITMAC03</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0/0/2/m</td>
</tr>
<tr>
<td></td>
<td>Infocommunication laboratory 2</td>
<td>BMEVITMAC03</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0/0/2/m</td>
</tr>
</tbody>
</table>

1/2/3/4/5/6/7: x: contact hours of lectures per week, y: contact hours of classroom practices per week, z: contact hours of laboratory exercises per week, e: examination, ce: comprehensive exam, m: mid-semester mark, s: signature; credit: credit value according to ECTS – 1 credit represents 30 work hours (on average)

1 One of the restricted electives (see below) must be finished.
2 10 credits of free electives could be substituted by any subjects available
3 Students should note that due to the early scheduling of the thesis defense session for students applying to MSc studies, the period for examination could be rather limited in the 7th semester

Specializations
List of available specialization blocks depends on the number of students. At least software engineering will be available. List of subjects are published on the website.
Curriculum of MSc Subjects in Computer Engineering
Applied Informatics Main Specialization

<table>
<thead>
<tr>
<th>Subject</th>
<th>Name</th>
<th>Code</th>
<th>Credits</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Requisities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamentals in Natural Sciences (20 credits)</td>
<td>System Optimization</td>
<td>BMEVISZMA02</td>
<td>4</td>
<td>0/0/3/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Applied algebra and mathematical logic</td>
<td>BMETE90MX57</td>
<td>4</td>
<td>0/0/3/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Formal Methods</td>
<td>BMEVIMIMA07</td>
<td>4</td>
<td>0/0/3/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Information theory</td>
<td>BMEVISZMA03</td>
<td>4</td>
<td>0/0/3/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Languages and automata</td>
<td>BMEVISZMA04</td>
<td>4</td>
<td>0/0/3/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subjects from Economic and Human Sciences (10 credits)</td>
<td>Elective Subject 1</td>
<td>BMEGTxxMxxx</td>
<td>2</td>
<td>0/0/3/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elective Subject 2</td>
<td>BMEGTxxMxxx</td>
<td>2</td>
<td>0/0/3/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elective Subject 3</td>
<td>BMEGTxxMxxx</td>
<td>2</td>
<td>0/0/3/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engineering Management</td>
<td>BMEVITMMB03</td>
<td>4</td>
<td>0/0/3/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Obligatory Subjects for the Specialization (28 credits)</td>
<td>Software Development Methods and Paradigms</td>
<td>BMEVIAUMA00</td>
<td>4</td>
<td>2/1/0/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distributed Systems and Domain-Specific Modeling</td>
<td>BMEVIAUMA01</td>
<td>4</td>
<td>2/1/0/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Service Oriented System Integration</td>
<td>BMEVIIIMA04</td>
<td>4</td>
<td>2/1/0/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Business Intelligence</td>
<td>BMEVIAUMA02</td>
<td>4</td>
<td>2/1/0/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Software and Systems Verification</td>
<td>BMEVIMIMA01</td>
<td>4</td>
<td>2/1/0/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distributed Systems Laboratory</td>
<td>BMEVIAUMA03</td>
<td>4</td>
<td>0/0/3/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Business Intelligence Laboratory</td>
<td>BMEVIAUMB00</td>
<td>4</td>
<td>0/0/3/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Compulsory Elective Subjects for the Specialization (36 credits)</td>
<td>Project Laboratory 1</td>
<td>BMEVxxML00</td>
<td>5</td>
<td>0/5/0/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Project Laboratory 2</td>
<td>BMEVxxML01</td>
<td>5</td>
<td>0/5/0/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thesis Project 1</td>
<td>BMEVxxMT00</td>
<td>10</td>
<td>0/5/0/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thesis Project 2</td>
<td>BMEVxxMT01</td>
<td>20</td>
<td>0/10/0/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freely Elective Subjects (6 credits)</td>
<td>Freely Elective Subject 1</td>
<td>BMExxxxxxxx</td>
<td>2</td>
<td>0/0/3/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Freely Elective Subject 2</td>
<td>BMExxxxxxxx</td>
<td>2</td>
<td>0/0/3/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Freely Elective Subject 3</td>
<td>BMExxxxxxxx</td>
<td>2</td>
<td>0/0/3/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smart City Secondary Specialization (16 credits)</td>
<td>Sensor networks and applications</td>
<td>BMEVITMMA09</td>
<td>4</td>
<td>2/1/0/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intelligent traffic systems</td>
<td>BMEVITMMA10</td>
<td>4</td>
<td>2/1/0/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Human-machine interface</td>
<td>BMEVITMMA11</td>
<td>4</td>
<td>2/1/0/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Smart city laboratory</td>
<td>BMEVITMMB04</td>
<td>2</td>
<td>0/0/3/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cloud and parallel systems Secondary Specialization (16 credits)</td>
<td>Cloud Computing</td>
<td>BMEVIIIMA05</td>
<td>4</td>
<td>2/1/0/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>High Performance Parallel Computing</td>
<td>BMEVIIIMA06</td>
<td>4</td>
<td>2/1/0/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GPGPU Applications</td>
<td>BMEVIIIMB01</td>
<td>4</td>
<td>2/1/0/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parallel Programming Laboratory</td>
<td>BMEVIIIMB02</td>
<td>4</td>
<td>0/0/3/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. Subjects from Economic and Human Sciences: three subjects are selected by the Faculty from the following list before the actual semester.

2. Secondary specializations will be determined before the first semester.

3. Freely Elective Subjects: a list of these subjects is published on the website.

Notation: working hours/week: x/y/z/r

- \(x \) = lecture hours
- \(y \) = practice hours
- \(z \) = laboratory hours
- \(r \) = requirement (e = exam, p = continuous work for a mark, s = signature)
Curriculum of MSc Subjects in Engineering Information Technology
Internet Architecture and Services Main Specialization

<table>
<thead>
<tr>
<th>Name</th>
<th>Code</th>
<th>Credits</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Requisities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamentals in Natural Sciences (20 credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Optimization</td>
<td>BMEVISZMA02</td>
<td>4</td>
<td>4/0/0/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applied algebra and mathematical logic</td>
<td>BMETE90MX57</td>
<td>4</td>
<td>4/0/0/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formal Methods</td>
<td>BMEVIMIMA07</td>
<td>4</td>
<td>3/0/0/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information theory</td>
<td>BMEVISZMA03</td>
<td>4</td>
<td>3/0/0/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Languages and automata</td>
<td>BMEVISZMA04</td>
<td>4</td>
<td>3/0/0/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subjects from Economic and Human Sciences (10 credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective Subject 1</td>
<td>BMEGTxxMxxx</td>
<td>2</td>
<td>2/0/0/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective Subject 2</td>
<td>BMEGTxxMxxx</td>
<td>2</td>
<td>2/0/0/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective Subject 3</td>
<td>BMEGTxxMxxx</td>
<td>2</td>
<td>2/0/0/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Management</td>
<td>BMEVITMMB03</td>
<td>4</td>
<td>4/0/0/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Obligatory Subjects for the Specialization (28 credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internet Ecosystem and its Evolution</td>
<td>BMEVITMMA00</td>
<td>4</td>
<td>2/1/0/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agile Network Service Development</td>
<td>BMEVITMMA01</td>
<td>4</td>
<td>2/1/0/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cloud Networking</td>
<td>BMEVITMMA02</td>
<td>4</td>
<td>2/1/0/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modeling Seminar for Engineers</td>
<td>BMEVITMMA03</td>
<td>4</td>
<td>2/1/0/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internet Services and Applications</td>
<td>BMEVITMMA04</td>
<td>4</td>
<td>2/1/0/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infocommunication Services Laboratory 1</td>
<td>BMEVIIHMA04</td>
<td>4</td>
<td>0/0/3/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infocommunication Services Laboratory 2</td>
<td>BMEVITMMB00</td>
<td>4</td>
<td>0/0/3/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Compulsory Elective Subjects for the Specialization (56 credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Obligatory Subjects for the Secondary Specialization (Smart City or Cloud and parallel systems)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Laboratory 1</td>
<td>BMEVIxxML00</td>
<td>5</td>
<td>0/0/5/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Laboratory 2</td>
<td>BMEVIxxML01</td>
<td>5</td>
<td>0/0/5/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thesis Project 1</td>
<td>BMEVIxxMT00</td>
<td>10</td>
<td>0/5/0/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thesis Project 2</td>
<td>BMEVIxxMT01</td>
<td>20</td>
<td>0/10/0/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freely Elective Subjects (6 credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freely Elective Subject 1</td>
<td>BMExxxxxxx</td>
<td>2</td>
<td>2/0/0/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freely Elective Subject 2</td>
<td>BMExxxxxxx</td>
<td>2</td>
<td>2/0/0/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freely Elective Subject 3</td>
<td>BMExxxxxxx</td>
<td>2</td>
<td>2/0/0/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smart City Secondary Specialization (16 credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensor networks and applications</td>
<td>BMEVITMMA09</td>
<td>4</td>
<td>2/1/0/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intelligent traffic systems</td>
<td>BMEVITMMA10</td>
<td>4</td>
<td>2/1/0/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human-machine interface</td>
<td>BMEVITMMA11</td>
<td>4</td>
<td>2/1/0/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smart city laboratory</td>
<td>BMEVITMMB04</td>
<td>2</td>
<td>0/0/2/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cloud and parallel systems Secondary Specialization (16 credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cloud Computing</td>
<td>BMEVIIIMA05</td>
<td>4</td>
<td>2/1/0/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Performance Parallel Computing</td>
<td>BMEVIIIMA06</td>
<td>4</td>
<td>2/1/0/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPGPU Applications</td>
<td>BMEVIIIMB01</td>
<td>4</td>
<td>2/1/0/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parallel Programming Laboratory</td>
<td>BMEVIIIMB02</td>
<td>4</td>
<td>0/0/3/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Subjects from Economic and Human Sciences: three subjects are selected by the Faculty from the following list before the actual semester.
 - Quality Management | BMEGT20M002 | 2 | 2/0/0/p |
 - Argumentation, Negotiation, Persuasion | BMEGT41MS01 | 2 | 2/0/0/p |
 - Investments | BMEGT35M004 | 2 | 2/0/0/p |
 - Management Accounting | BMEGT35M005 | 2 | 2/0/0/p |
2. Secondary specializations will be determined before the first semester.
3. Freely Elective Subjects: a list of these subjects is published on the website.

Notation: working hours/week: x/y/z/r
- x = lecture hours
- y = practice hours
- z = laboratory hours
- r = requirement (e = exam, p = continuous work for a mark, s = signature)
Curriculum of MSc Subjects in Electrical Engineering

Embedded Systems Main Specialization

<table>
<thead>
<tr>
<th>Subject</th>
<th>Name</th>
<th>Code</th>
<th>Credits</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Requisities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamentals in Natural Sciences (22 credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics</td>
<td>BMETE11MX33</td>
<td>4</td>
<td></td>
<td></td>
<td>3/1/0/e</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stochastics (Advanced Mathematics for Electrical Engineers)</td>
<td>BMETE90MX55</td>
<td>3</td>
<td></td>
<td></td>
<td>2/1/0/p</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurement theory</td>
<td>BMENVIIMIMA17</td>
<td>4</td>
<td></td>
<td></td>
<td>3/0/0/p</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear algebra (Advanced Mathematics for Electrical Engineers)</td>
<td>BMETE90MX54</td>
<td>3</td>
<td></td>
<td></td>
<td>2/1/0/p</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photonic Devices</td>
<td>BMENVIETMA06</td>
<td>4</td>
<td></td>
<td></td>
<td>4/0/0/p</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication Theory</td>
<td>BMENVHVMA07</td>
<td>4</td>
<td></td>
<td></td>
<td>3/0/0/p</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subjects from Economic and Human Sciences (10 credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective Subject 1</td>
<td>BMETGxxMxxx</td>
<td>2</td>
<td></td>
<td></td>
<td>2/0/0/p</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective Subject 2</td>
<td>BMETGxxMxxx</td>
<td>2</td>
<td></td>
<td></td>
<td>2/0/0/p</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective Subject 3</td>
<td>BMETGxxMxxx</td>
<td>2</td>
<td></td>
<td></td>
<td>2/0/0/p</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Management</td>
<td>BMENVITMMB03</td>
<td>4</td>
<td></td>
<td></td>
<td>4/0/0/e</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Obligatory Subjects for the Specialization (28 credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High performance µcontrollers</td>
<td>BMENVIAUMA07</td>
<td>4</td>
<td></td>
<td></td>
<td>2/1/0/e</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW technology for embedded systems</td>
<td>BMENVIMIMA09</td>
<td>4</td>
<td></td>
<td></td>
<td>2/1/0/e</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer vision systems</td>
<td>BMENVIIIMA07</td>
<td>4</td>
<td></td>
<td></td>
<td>2/1/0/e</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Development of SW applications</td>
<td>BMENVIAUMA09</td>
<td>4</td>
<td></td>
<td></td>
<td>2/1/0/e</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design & integration of embedded systems</td>
<td>BMENVIMIMA11</td>
<td>4</td>
<td></td>
<td></td>
<td>2/1/0/e</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Embedded systems laboratory 1</td>
<td>BMENVIMIMA12</td>
<td>4</td>
<td></td>
<td></td>
<td>0/0/3/p</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Embedded systems laboratory 2</td>
<td>BMENVIIIMA11</td>
<td>4</td>
<td></td>
<td></td>
<td>0/0/3/p</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Compulsory Elective Subjects for the Specialization (54 credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Compulsory Subjects for the Secondary Specialization (Smart City or Smart Systems Integration)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Laboratory 1</td>
<td>BMENVIxxML02</td>
<td>5</td>
<td></td>
<td></td>
<td>0/0/5/p</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Laboratory 2</td>
<td>BMENVIxxML03</td>
<td>5</td>
<td></td>
<td></td>
<td>0/0/5/p</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thesis Project 1</td>
<td>BMENVIxxMT02</td>
<td>10</td>
<td></td>
<td></td>
<td>0/5/0/p</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thesis Project 2</td>
<td>BMENVIxxMT03</td>
<td>20</td>
<td></td>
<td></td>
<td>0/10/0/p</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Freely Elective Subjects (6 credits)								
Freely Elective Subject 1	BMEXxxxxxxx	2			2/0/0/p			
Freely Elective Subject 2	BMEXxxxxxxx	2			2/0/0/p			
Freely Elective Subject 3	BMEXxxxxxxx	2			2/0/0/p			

Notes:

1. **Subjects from Economic and Human Sciences:** three subjects are selected by the Faculty from the following list before the actual semester:
 - Quality Management | BMETG20M002 | 2 | | | 2/0/0/p |
 - Argumentation, Negotiation, Persuasion | BMETG41MS01 | 2 | | | 2/0/0/p |
 - Investments | BMETG35M004 | 2 | | | 2/0/0/p |
 - Management Accounting | BMETG35M005 | 2 | | | 2/0/0/p |

2. **Freely Elective Subjects:** a list of these subjects is published on the website.

Notation: working hours/week: x/y/z/r

- x = lecture hours
- y = practice hours
- z = laboratory hours
- r = requirement (e = exam, p = continuous work for a mark, s = signature)
Curriculum of MSc Subjects in Electrical Engineering
Multimedia Systems and Services Main Specialization

<table>
<thead>
<tr>
<th>Subject</th>
<th>Name</th>
<th>Code</th>
<th>Credits</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Requisities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamentals in Natural Sciences (22 credits)</td>
<td>Physics 3</td>
<td>BMETE11MX33</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>3/1/0/e</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stochastics (Advanced Mathematics for Electrical Engineers)</td>
<td>BMETE90MX55</td>
<td>3</td>
<td></td>
<td></td>
<td>2/1/0/p</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Measurement theory</td>
<td>BMEVIMIMA17</td>
<td>4</td>
<td>3/0/0/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Combinatorial optimization (Advanced Mathematics for Electrical Engineers)</td>
<td>BMENVISZMA06</td>
<td>3</td>
<td>2/1/0/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Photonic Devices</td>
<td>BMENVIETMA06</td>
<td>4</td>
<td>4/0/0/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Communication Theory</td>
<td>BMENVHVMAMA07</td>
<td>4</td>
<td>3/0/0/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subjects from Economic and Human Sciences (10 credits)</td>
<td>Elective Subject 1</td>
<td>BMEGTxxMxxx</td>
<td>2</td>
<td>2/0/0/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elective Subject 2</td>
<td>BMEGTxxMxxx</td>
<td>2</td>
<td>2/0/0/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elective Subject 3</td>
<td>BMEGTxxMxxx</td>
<td>2</td>
<td>2/0/0/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engineering Management</td>
<td>BMEVITMMB03</td>
<td>4</td>
<td>4/0/0/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Obligatory Subjects for the Specialization (28 credits)</td>
<td>Mobile and wireless networks</td>
<td>BMENVHIMA07</td>
<td>4</td>
<td>2/1/0/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Broadband Wireless Telecommunication and Broadcasting Systems</td>
<td>BMENVHVMAMA01</td>
<td>4</td>
<td>2/1/0/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foundations of multimedia technologies</td>
<td>BMENVHIMA08</td>
<td>4</td>
<td>2/1/0/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Networked Multimedia Systems and Services</td>
<td>BMENVHIMA09</td>
<td>4</td>
<td>2/1/0/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Media informatics systems</td>
<td>BMENVITMMAMA08</td>
<td>4</td>
<td>2/1/0/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Laboratory on Multimedia Systems and Services 1</td>
<td>BMENVHIMA10</td>
<td>4</td>
<td>0/0/3/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Laboratory on Multimedia Systems and Services 2</td>
<td>BMENVHIMB02</td>
<td>4</td>
<td>0/0/3/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Compulsory Elective Subjects for the Specialization (54 credits)</td>
<td>Basic Obligatory Subjects for the Secondary Specialization (Smart City or Smart Systems Integration)</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Project Laboratory 1</td>
<td>BMENVxxxML02</td>
<td>5</td>
<td>0/0/5/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Project Laboratory 2</td>
<td>BMENVxxxML03</td>
<td>5</td>
<td>0/0/5/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thesis Project 1</td>
<td>BMENVxxxMT02</td>
<td>10</td>
<td>0/5/0/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thesis Project 2</td>
<td>BMENVxxxMT03</td>
<td>20</td>
<td>0/10/0/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freely Elective Subjects (6 credits)</td>
<td>Freely Elective Subject 1</td>
<td>BMExxxxxxxx</td>
<td>2</td>
<td>2/0/0/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Freely Elective Subject 2</td>
<td>BMExxxxxxxx</td>
<td>2</td>
<td>2/0/0/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Freely Elective Subject 3</td>
<td>BMExxxxxxxx</td>
<td>2</td>
<td>2/0/0/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. **Subjects from Economic and Human Sciences**: three subjects are selected by the Faculty from the following list before the actual semester
 - Quality Management BMEGT20M002 2 2/0/0/p
 - Argumentation, Negotiation, Persuasion BMEGT41M001 2 2/0/0/p
 - Investments BMEGT35M004 2 2/0/0/p
 - Management Accounting BMEGT35M005 2 2/0/0/p

2. **Freely Elective Subjects**: a list of these subjects is published on the website.

Notation:
- \(x/y/z/r \) working hours/week: \(x = \text{lecture hours} \)
- \(y = \text{practice hours} \)
- \(z = \text{laboratory hours} \)
- \(r = \text{requirement (e = exam, p = continuous work for a mark, s = signature)} \)
Curriculum of MSc Subjects in Electrical Engineering
Electric Power Systems Main Specialization

<table>
<thead>
<tr>
<th>Name</th>
<th>Code</th>
<th>Credits</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Requisities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamentals in Natural Sciences (22 credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics</td>
<td>BMETE11MX33</td>
<td>4</td>
<td>3/1/0/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stochastics (Advanced Mathematics for Electrical Engineers)</td>
<td>BMETE90MX55</td>
<td>3</td>
<td>2/1/0/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternating current systems</td>
<td>BMEVIVEM13</td>
<td>4</td>
<td>3/0/0/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combinatorial optimization (Advanced Mathematics for Electrical Engineers)</td>
<td>BMEVISZMA06</td>
<td>3</td>
<td>2/1/0/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical Insulations and Discharges</td>
<td>BMEVIVEM14</td>
<td>4</td>
<td>4/0/0/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication Theory</td>
<td>BMEVIHVMA07</td>
<td>4</td>
<td>3/0/0/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subjects from Economic and Human Sciences (10 credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective Subject 1</td>
<td>BMEGTxxMxxx</td>
<td>2</td>
<td>2/0/0/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective Subject 2</td>
<td>BMEGTxxMxxx</td>
<td>2</td>
<td>2/0/0/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective Subject 3</td>
<td>BMEGTxxMxxx</td>
<td>2</td>
<td>2/0/0/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Management</td>
<td>BMEVIITMMB03</td>
<td>4</td>
<td>4/0/0/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Obligatory Subjects for the Specialization (28 credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power system operation and control</td>
<td>BMEVIVEMA01</td>
<td>4</td>
<td>2/1/0/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical systems of sustainable energetic</td>
<td>BMEVIVEMA02</td>
<td>4</td>
<td>2/1/0/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power system transients</td>
<td>BMEVIVEMA03</td>
<td>4</td>
<td>2/1/0/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protection systems and measurement technology</td>
<td>BMEVIVEMA04</td>
<td>4</td>
<td>2/1/0/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electric energy market</td>
<td>BMEVIVEMA05</td>
<td>4</td>
<td>2/1/0/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electric Power Systems laboratory 1</td>
<td>BMEVIVEMA06</td>
<td>4</td>
<td>0/0/3/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electric Power Systems laboratory 2</td>
<td>BMEVIVEMB00</td>
<td>4</td>
<td>0/0/3/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Compulsory Elective Subjects for the Specialization (54 credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Obligatory Subjects for the Secondary Specialization (Smart City or Smart Systems Integration)</td>
<td></td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Laboratory 1</td>
<td>BMEVIxxML02</td>
<td>5</td>
<td>0/0/5/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Laboratory 2</td>
<td>BMEVIxxML03</td>
<td>5</td>
<td>0/0/5/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thesis Project 1</td>
<td>BMEVIxxMT02</td>
<td>10</td>
<td>0/5/0/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thesis Project 2</td>
<td>BMEVIxxMT03</td>
<td>20</td>
<td>0/10/0/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freely Elective Subjects (6 credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freely Elective Subject 1</td>
<td>BMExxxxxx</td>
<td>2</td>
<td>2/0/0/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freely Elective Subject 2</td>
<td>BMExxxxxx</td>
<td>2</td>
<td>2/0/0/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freely Elective Subject 3</td>
<td>BMExxxxxx</td>
<td>2</td>
<td>2/0/0/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smart City Secondary Specialization (14 credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freely Elective Subject 1</td>
<td>BMExxxxxx</td>
<td>2</td>
<td>2/0/0/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freely Elective Subject 2</td>
<td>BMExxxxxx</td>
<td>2</td>
<td>2/0/0/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freely Elective Subject 3</td>
<td>BMExxxxxx</td>
<td>2</td>
<td>2/0/0/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smart city laboratory</td>
<td>BMEVIITMMB04</td>
<td>2</td>
<td>0/0/2/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smart Systems Integration Secondary Specialization (14 credits)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamentals of smart systems</td>
<td>BMEVIEEMA04</td>
<td>4</td>
<td>2/1/0/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System level design</td>
<td>BMEVIEEMA05</td>
<td>4</td>
<td>2/1/0/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circuit environment</td>
<td>BMEVIEEMA06</td>
<td>4</td>
<td>2/1/0/e</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smart systems design laboratory</td>
<td>BMEVIEEMB00</td>
<td>2</td>
<td>0/0/2/p</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Subjects from Economic and Human Sciences: three subjects are selected by the Faculty from the following list before the actual semester.
 - Quality Management
 - Argumentation, Negotiation, Persuasion
 - Investments
 - Management Accounting

2. Secondary specializations will be determined before the first semester.
3. Freely Elective Subjects: a list of these subjects is published on the website.

Notation: working hours/week: x/y/z/r
- x = lecture hours
- y = practice hours
- z = laboratory hours
- r = requirement (e = exam, p = continuous work for a mark, s = signature)
Description of BSc Courses in Electrical Engineering

Mathematics A1

BMETE90AX00

Mathematics A2

BMETE90AX26

Mathematics A3

BMETE90AX09

Mathematics A4

BMETE90AX51

Physics 1

BMETE11AX21

Physics 2

BMETE11AX22

Foundation of computer science

BMEVISZAA02

The objective of the subject is to provide the students with the required theoretical background in combinatorics, algorithms, elementary cryptography, and graph theory for further studies in electrical engineering. Within the subject, the students learn about the basic concepts of combinatorics and of graph theory (trees, planar graphs, Hamilton cycles, coloring of graphs, matchings and some basic algorithms like BFS, shortest path algorithms, maximal flow algorithm, DFS and the PERT method. We also discuss the basic concepts of complexity theory, NP completeness as well as fundamentals of number theory, leading to the concept of public key cryptography and RSA encoding. (4 credits)

Informatics 1

BMEVIIIA04

This course (as a continuation of Digital Design 1 and 2) provides the students with comprehensive knowledge related to the architecture and functioning principles of modern computers and their operating systems. The basic principles and the evolution of most hardware and software concepts used in today’s computer systems are presented through case studies of existing systems and through quantitative example problems. Students successfully satisfying the course requirements will be able to understand the documentation and the functioning of modern computers and operating systems. They will also be able to easily learn the installation, configuration and maintenance tasks of such systems. (5 credits)

Informatics 2

BMEVIIIA01

Electronics technology and materials

BMEVIIAB00

The primarily objective of the course is to provide the students with knowledge and practical skills related to circuit modules and systems. The course provides a comprehensive overview of microelectronic devices, components, mechatronic, optoelectronic and other modules and about the structure of electronic equipments including their manufacturing, maintenance and assembly technologies. (6 credits)

Basics of programming 1

BMEVIIIAA01

The main objective of the course is to provide students with appropriate skills in computerized problem-solving and basic use of tools that can be effectively applied during their further studies. A further goal of the course is to teach writing portable programs. Learning a high-level programming language the C language allows students to reach these goals in practice. The classroom practice follows the syllabus of lectures; helps better understand the topics of the lecture through detailed examination of the algorithms. (7 credits)

Basics of programming 2

BMEVIIIAA00

This course, as a basic BSc course based on the previous term, continues the exposition of methods and tools of computational problems. The main goal is an introduction of object-oriented programming. Based on the C programming language skills, the object-oriented techniques are introduced with the help of C++ programming language. The curriculum of computer laboratories continuously follows the lectures. (7 credits)

Digital design 1

BMEVIIIAA01

The course (together with the course entitled Digital Design 2) provides the students with all system level hardware knowledge required to the logical level design of digital equipment. The theoretical background is also widened through the solution of design problems during the classroom practices. Obtained skills and expertise: The knowledge acquired in the framework of the course (together with the course entitled Digital Design 2) allows students to solve any logical design problems they may encounter in electrical engineering. (5 credits)

Digital design 2

BMEVIIIAA02

The course (together with the course entitled Digital Design 1) provides the students with all system level hardware knowledge required to the logical level design of digital equipment. The theoretical background is also widened through the solution of design problems during the classroom practices. Obtained skills and expertise: The knowledge acquired in the framework of the course (together with the course entitled Digital Design 1) allows students to solve any logical design problems they may encounter in electrical engineering. (5 credits)

Signals and systems 1

BMEVIIHAA00

The objective of this class is to introduce the basic concepts of signal and system, and to provide computational methodologies applicable to continuous systems. It presents the time domain and the sinusoidal steady state analysis. The practical examples refer to continuous systems represented by Kirchoff type electric circuits. The principles to formulate the models and the methods to solve the resulting equations are discussed. The students fulfilling the requirements of this class will be able to apply the methodologies of system and network analysis in the time domain and in the frequency domain in case of sinusoidal excitation. (6 credits)
Signals and systems 2

BMEVIIHVA001

The course is a follow-up of Signals and Systems I. It provides the foundations of analysis methods for continuous time systems in the frequency and complex frequency domains. Furthermore, it presents various system description methods and establishes the connections between these representations. It also deals with analysis methods of discrete time signals and systems both in time, frequency and z domains. The link between continuous and discrete systems is presented by dealing with discrete approximation of continuous time systems, and the basics of signal sampling and reconstruction are shown. The last part introduces analysis techniques for continuous time nonlinear circuits and systems. (6 credits)

Electrotechnics

BMEVIVEAB00

Introduction to electromagnetic fields

BMEVIIHVAC003

The course teaches the fundamentals of classical electromagnetics in an engineering approach. Besides the main principles, the most important fields of engineering applications as well as some analysis methods are discussed. The lectures are complemented with classroom practices. Topics covered: Part I. Fundamental laws: measurable quantities, scalar and vector fields, Maxwell's equations, fields in materials, circuit conditions, Poynting's theorem, forces, classification. Part II. Static fields: scalar electric potential, Laplace-Poisson-equation, electrodes, capacitance, electric dipole, method of images, finite difference method; current flow problems, grounding, step voltage; static magnetic fields, Biot-Savart law, self and mutual inductance, induction phenomena. Part III. Transmission lines: telegraph equations, Helmholtz-equation, specific loads, matching, standing wave ration, two-port equivalent. Part IV. Wave phenomena: wave equation, plane waves, transmission line analogy, reflection and refraction, polarised waves, waves in dielectrics and conductors, skin effect, elementary electric dipole antenna, rectangular waveguides. (4 credits)

Electronics 1

BMEVIIHIA002

Virtually every electronic equipment used today is constructed on the basis of high complexity circuits. All electrical engineers must know the construction and functioning principles of such devices. In order to understand the behavior of complex systems, the elementary design principles and dimensioning procedures should be presented which is the objective of this course. Obtained skills and expertise: The students get acquainted with the definitions and management of the parameters of electrical components and will understand the calculations of the properties of electronic circuits built up of such components. The skills obtained in the framework of this course (together with the course entitled Electronics 2) empowers students with the necessary expertise to understand the courses of the related study specialization blocks. (5 credits)

Electronics 2

BMEVIAUAC005

The goal of the course is to lay down the basis of the aspects of more complex electronic systems, including their functions, their operation and their structure. This formed basis can be built upon by later specialization courses. The course discusses two main areas of electronics: power electronics and signal level electronics. During the discussion of power electronics, the design and usage of basic power semiconductors (PN junction, diode, BJT, Darlington, MOSFET, SCR, GTO, IGBT) are covered. Diodes and thyristors in rectifiers, grid commutation based converters and AC choppers are also covered. The material includes basic DC-DC converter topologies (buck, boost, buck-boost) and single phase inverters as well. The second part of the course provides a brief introduction into several topics of signal level electronics, including nonlinear circuits, phase locked loops (containing voltage controlled oscillators, phase detectors, analog PI controllers), passive and active filters, and analog modulation techniques. (5 credits)

Measurement technology

BMEVIMIAB001

The aim of the subject is to give insight into metrology, measurement theory, measurement technology and instrumentation. Besides the theoretical aspects, the course also prepares students for laboratory practices. Model building and problem solving skills of the students are developed. The subject focuses on the measurement of electrical quantities but also emphasizes the analogies with non-electrical problems. (5 credits)

Laboratory 1

BMEVIMIAC005

The primary aim of this laboratory course is to improve the skills of the students in the following areas: to get acquainted with the materials, components and instruments in the area of electrical engineering and to practice the designing of measurement setups, setting up the measurement, mea-
Laboratory 2
BMEVIMAC07
This subject is based on the “Laboratory 1” subject and enables the students to gain deeper knowledge and experience in the following areas: the materials, components and instruments in the area of electrical engineering; the designing of measurement setups, setting up the measurement, measuring and using the infrastructure of the laboratory; and to evaluate and document the measurement results. These practical competences and skills in the selected fields of electrical engineering are acquired by using up-to-date measurement equipment. (4 credits)

Space Technology
BMEVIHVH05
This subject is an overview of engineering, design, construction, testing and operation of electronic systems for space. Nevertheless, this knowledge is well applicable also in design of high reliability terrestrial equipments that are operating under extreme environmental conditions. System concepts of big space structures like satellites and probes and the problems of smaller units are also discussed. The theory and practice of space communications, the design and parts selection for high reliability electronics, the effects of interplanetary space and radiation, the mechanical construction problems and space related analogue and digital electronics are also highlighted. The lectures are extended with practice to deepen the knowledge and resolve practical problems. (4 credits)

Embedded and ambient systems
BMEVIMAC06
The aim of the subject is to develop the ability to select components of embedded systems, to design the system and to integrate the components. This includes selection of communication interfaces and protocols, design of information processing algorithms and software structure. The subject presents the principal building blocks of embedded systems, their main requirements and properties. These topics cover (but are not limited to) analog signal processing and signal conditioning, operation and features of processing units (DSP), digital signal processing, basic software architectures and their analyses, signal converters (AD/DA) and the popular communication systems used in embedded systems. (4 credits)

Power engineering
BMEVIVEAB01
The aim of the course is to lecture basic knowledge of power systems, which are necessary for all electrical engineers, and are also a foundation for students taking power system engineering major. Introduction of the structure and operation of power systems, organized along the operation principles of elements and subsystems of the network. Representation of power systems, basic methods of examination of symmetrical operation. Detailing of the most important questions of asymmetrical operation from the aspect of distribution and consumer networks. Requirements of power quality and security of supply. Health effects and EMC aspects of electric and magnetic fields of the power system. Overview on the paradigm shift of different fields of power system engineering (production, transmission, service, environmental effects), the smart grid concept and other actual trends. (5 credits)

Electric power transmission
BMEVIVEAC00
The course is intended to provide theoretical knowledge and practical skills in the following fields: structure of the power system, network transformations, process of power transmission and distribution, network elements used for transmission and distribution tasks, interpretation and determination of parameters of transmission network elements used for calculations, representation of the elements, power line and transformer operations, power and voltage conditions of steady state operation, power losses, application of symmetrical components, fundamental effects of short-circuits and switches, calculation, principles of star point earthing, related phenomena, Substation and busbar topologies. (4 credits)

Electrical machines and applications
BMEVIVEAC01

Control of electric drives
BMEVIVEAC04
Drive specific and task specific drive controls. Subordinated control structure. Transient equations and block schemes of DC machines. Line-commutated converter-fed DC drives: block schemes for continuous and discontinuous conduction, circulating current and non-circulating current control for quadrant and 2/4 quadrant operation. Adaptive cur-

Microelectronics

BMEVIEEAB00

The basic goal of the course is to deepen the already acquired knowledge in the field of digital electronics through presenting the latest implementation techniques of digital integrated circuits. Further goals of the subject are to provide information on the basics of analogue integrated circuits, components of power electronics and solid-state lightning. Today's electronics and IT devices are all based on different special discrete semiconductors and complex integrated circuits. Solid knowledge regarding the structure, operation and manufacturing of these devices is among the necessary skills of today's electrical engineers including basics of IC design at least on the level which allows effective communication with IC design specialists. They have to know how system level design connects with the IC design as well. Special emphasis is put on the corresponding practical skills through simple case studies (calculation examples) as well as computer laboratory practices where the students get acquainted with the basic steps IC design. An important aspect of the course is to bridge the gap between the operation of abstract electronics components and the physical reality: the major components used in ICs (diodes, transistors, etc.) are discussed in detail. A detour is made towards the MEMS and MOEMS, where electrical operation is combined with mechanical and optical effects. (5 credits)

Microcontroller based systems

BMEVIAUA06

The course describes the most widespread microcontroller architectures and gives guidance for their selection for the given application. The course provides competences to design and implement the hardware components of microcontroller based systems and to implement the associated low level software system. Design phases are demonstrated by case studies. (4 credits)

Embedded operating systems and client apps.

BMEVIAUA0C07

The students will be able to understand and make use of the basic concepts of embedded operating systems. The objective of the course is to present platforms, techniques and tools which are required to create and run both application and system level software for embedded systems. After creating the hardware unit and embedded programs for it, the next natural step is the implementation of a desktop or web application that enables monitoring and parameterizing the hardware unit from a standard PC. Mobile applications are becoming more widely used as well. The course presents the programming of desktop and web based client applications, focusing on user interfaces, graphics drawing tools, multithreaded and network programming. Most modern development platforms follow object-oriented concepts. Consequently, the course provides introduction to object-oriented design, basic UML and a few architectural and design patterns.

Students will be able to develop desktop and thin client applications to access hardware units from PCs, and to create user friendly user interfaces for different client types. Network programming also gets an important role. The topics covered are illustrated by case studies and demo applications. (4 credits)

Network Technologies and Applications

BMEVITMAC05

The goal of this course is on one hand to present the basic principles of the currently used and emerging wired access network technologies, focusing mostly on the data link layer. On the other hand it aims to present the principles of network layer communication both in wired and wireless environments, focusing on routing algorithms in fixed and ad hoc networks, IP multicast technologies as well as mobility handling over IP networks. Then, the course presents different architectures of networking applications, the client-server and the peer-to-peer communication model, and the principles of cloud communications. Finally, the course presents some application scenarios, and touches briefly emerging topics such as the Future Internet and the Internet of Things. (4 credits)

Control engineering

BMEVIIAB05

The control of technological, economical, and environmental processes belongs to the electrical engineers’ most important professional activities that require both abstract and applied knowledge and competences. Besides its contribution to form an engineering approach of problem solving, the course teaches the fundamentals of control engineering, the main principles of analysis and synthesis of control loops, and the use of the related computational tools. Students successfully satisfying the course requirements are prepared to analyze discrete and continuous time control loops, to design different types of compensators and to later engage courses in more advanced fields in control theory such as optimal control and identification of dynamical systems. Lectures are complemented with classroom and computer laboratory practices. (4 credits)
Description of BSc Courses in Computer Engineering

Calculus 1 for informaticians
BMETE90AX21
Real sequences. Special limits, number e. Operations on convergent sequences. Monotonict and bounded sequences. Continuity and differentiability of real functions of a single variable. Elementary functions and their inverses, properties of differentiable functions, mean value theorems, LI hospital rule, sketching graphs, parametric and polar curves. Integral of functions of a single variable. Methods of integration, the fundamental theorem of calculus (Newton-Leibniz formula), applications, improper integrals. (6 credits)

Calculus 2 for informaticians
BMETE90AX22

Probability theory
BMEVISZAB00
The objective of the subject is to learn the basics of stochastic modeling. Within the subject the students learn about the basic concepts of probability and random variables. They get acquainted with various discrete and continuous distributions. Students also learn the notion of expected value and higher moments. The course concludes with theorems of large numbers, the notion of regression and correlation. (4 credits)

Introduction to the theory of computing 1
BMEVISZAA00
The objective of the subject is to acquire the fundamental mathematical knowledge (in the area of linear algebra and number theory) necessary for software engineering studies. Within the subject the students learn about coordinate geometry in the space, the vector space Rn and its various properties, solving systems of linear equations with the Gaussian elimination, determinants and basic properties of linear mappings as well as fundamentals of number theory, leading to the concept of public key cryptography and RSA encoding. (4-490) (4 credits)

Introduction to the theory of computing 2
BMEVISZAA01
The objective of the subject is to acquire the fundamental mathematical knowledge (in the area of graph theory) necessary for software engineering studies. Within the subject the students learn about the basic notions of graph theory, trees, planar graphs, Euler circuits and Hamilton cycles, vertex- and edge colorings of graphs, matchings and higher connectivity as well as some basic algorithms like BFS, shortest path algorithms, Kruskal's algorithm, maximal flow algorithm, DFS and the PERT method. (4 credits)

Coding technology
BMEVIHIA00
Clear understanding of the basic principles, notions, models, techniques in the field of data compression coding, error control coding, and cryptography security encoding, supported by solving a lot of numerical problems. Obtained skills and expertise: Ability to apply basic techniques in communication technologies and solve standard design problems. (4 credits)

Theory of algorithms
BMEVISZAB01
The objective of the subject is to learn the basic methods and skills in the design and analysis of algorithms and to study the most important models of computations. Within the subject the students learn about the basic types of automata (finite, pushdown and Turing machine, all deterministic and nondeterministic) and their relationship to formal languages. They get acquainted with the basic complexity classes. Further algorithmic tools include linear and integer programming, dynamical programming, and sorting and searching techniques. (4 credits)

Physics 1i
BMETE11AX23
kinematics, work and energy, potential energy, linear momentum and collisions, rotation of a rigid object about a fixed axis, angular momentum, kepler's laws of planetary motion, static equilibrium, accelerating frames, oscillatory motion, waves, special relativity, kinematics, special relativity, dynamics, temperature, heat and the 1st law of thermodynamics, the kinetic theory of gases, heat engines, entropy and the 2nd law of thermodynamics. (4 credits)

Physics 2i
BMETE11AX24
electric fields, electric potential, capacitance and dielectrics, current and resistance, direct current circuits, magnetic fields, sources of the magnetic field, faraday's law, inductance, light and optics, interference of light waves, diffraction and polarization, lasers and holography, introduction to quantum physics, quantum mechanics. (4 credits)

System theory
BMEVIHVAB00
The main objective of the class is to introduce the basic concepts of signal and system theory, mathematical methods. It will be introduced the linear, time invariant system alaysis for time continuous and discrete cases. The analysis methods are introduced in time, frequency and complexe frequency domain. Examples for signal processing, telecommunications and also for business processes are discussed. The students fulfilling the requirements of this class will be able to apply the methodologies of system analysis and the basic elements of process control. (4 credits)
Technology of IT devices
BMEVIEEAC00
The goal of the subject is to present the students the operation of the most important hardware elements of IT devices, the fundamentals of electronics and its manufacturing technology. It is presented what opportunities modern microelectronics assures to computation, what are the physical limits and the trends of development. At the laboratory practices the students experience themselves that hardware and software development occurs with the help of similar methods and tools. (4 credits)

Digital design
BMEVIMIAA01
Digital technology is an important core subject in the curriculum of the Engineering Information Technology. The most important objective of the course is to present the process of engineering and system-oriented approach of problems, and to acquire basic practical skills to for good problem solving. The following topics are discussed: computing systems, the basic elements of the operation of logic circuits, the digital abstraction of the simple tasks and the direct hardware or low-level software implementations of them. The course starts with the introduction of the binary arithmetic, the operations done by basic digital functional units and controllers, and ends by the presentation of the general-purpose microcontroller architectures and its design and applications. Lectures are completed with classroom and laboratory exercises, where the focus is on the mastering of modern computer design methods and on the direct design/development experience. (7 credits)

System modelling
BMEVIMIAAO0
The course overviews the design process of IT systems in a model based approach. The goal of this course is to provide solid understanding on the basic modeling tasks and tools, which are important prerequisite for other courses including application specific modeling. (e.g.) Additionally, the course provides opportunity to experiment with conceptually straightforward and easy to learn tools, which can be used for simple application logic development. The participants of the course will learn the basic concepts and modeling aspects of high level, graphical tool supported, process centric modeling, verification, performance analysis and service quality assurance. The course builds on learning experience at digital technology course and you can build competence in systematic system design process. Participants will also gain experience in the process of implementing IT system through the steps of modelling exercises. Finally, they get an overview of simulation based system analysis and visual data analysis of measurement results. The didactical goal of the course is to improve the abstraction skill of the participants and lay the foundations of the upcoming courses on conceptual and motivational level. (4 credits)

Computer architectures
BMEVIHIAA00
The course objective is to present the basic notions of computer architectures and the related application and design methods such that the student can formally solve fundamental software and hardware problems. Obtained skills and expertise: Understand and solve computer architecture related hardware and software problems. (5 credits)

Communication networks 1
BMEVIIHIAA01
The course objective is to present the fundamental principles of the construction, architecture and protocols of computer network. Obtained skills and expertise: Understanding the operating principles, architecture and protocols in computer networks as a basis for later specialized studies. (4 credits)

Communication networks 2
BMEVITMAA01
The aim of this course is to provide both theoretical and practical knowledge about communication networks, and about telecommunication networks in particular. The course starts from the classical wireline telephony networks, including the speech digitalization, and the architecture of telephony exchanges. The next major part is wired IP access networks, including digital subscriber loops (especially ADSL and its variants), cable television-based Internet access, and optical access networks with the focus on GPON systems. Triple-play services, including IP television and Voice over IP (VoIP), are certainly part of this subject, including an introduction to speech codecs. A whole range of mobile cellphone networks are also covered from GSM to LTE. Introduction to backbone transport network technologies (including MPLS and its extensions, optical wavelength- and waveband switching) concludes the course. (4 credits)

Operating systems
BMEVIMIABA00
The subject introduces students to the functions, internal operation, and types of operating systems, and in addition, to the programming model of concurrent, distributed systems. It also demonstrates these concepts using examples, including the task of operating system selection. The lectures and the laboratories, which are inherent part of the subject, concentrate on the relationship of the hardware and the operating system, making it possible for students to use operating systems in practical applications. (5 credits)

Basics of programming 1
BMEVIEEAA00
The main objective of this course is to provide students with appropriate skills in computer-based problem solving and basic use of program development tools. These skills are to be effectively applied during further studies. The C language is selected as working language to illustrate how portable programs can be developed and to allow students to gain practice in actual coding. The classroom practice follows the syllabus of lectures; helps better understand the topics of the lecture through detailed examination of the algorithms. The classes are completed with a long-term individual homework assignment to help improve the students’ skills. (7 credits)

Basics of programming 2
BMEVIIIAA00
This semester focuses on leading the students to a deeper understanding of C language, and a special emphasis is also put on the steps of solving very complex programming tasks using an object-oriented approach. The latter is achieved via learning the C++ language, assuming a reliable knowledge of C. The practice classes follow the topics of the lectures and discuss further details of the object-oriented concept and the language elements. First the students learn...
how the C++ language derives from C. Inline macros, prototyes, default arguments and function overloading are explained. Dynamic memory allocation process of C++, reference type, visibility and scope of data are discussed. Next the object-oriented concept is introduced via the C++ language. The principles and concepts behind the object oriented programming paradigm are shown with the corresponding C++ syntax. Topics include classes, encapsulation, protection; member functions, constructor/destructor, friend mechanism; operator overloading; inheritance, virtual functions; generic classes. Last the students are introduced to essential operating system functions and to development and documenting tools. (7 credits)

Basics of programming 3

BMEVIIIAB00

The course, as a continuation of Basics of Programming 1 and 2, aims at further enhancing skills in object-oriented techniques and algorithmic solutions. The course introduces Java syntax and the basic Java class libraries, like IO, utilities, generics, collections. Special topics, like thread handling with synchronization and signaling, GUI concepts and implementation using Swing, unit testing with JUnit, XML handling in SAX and JDOM, and logging via log4j are also covered. The connections between UML and OO implementations, especially in C++ and Java are introduced. The course relies on skills and knowledge of C and C++, that are mandatory for successfully finishing the semester. (5 credits)

Databases

BMEVITMAB00

Databases laboratory

BMEVITMAB02

The course provides practical and technological knowledge related to some selected topics of database usage and database application development. Oracle system: logical and physical data structures, operation of Oracle instance, locking levels, SQL Developer, configuration of physical storage parameters. SQL language: definition, creation and deletion of tables, insert-delete-modification of data, queries, indices, granting different rights, modification of data structures, transaction management, controlling of concurrent data access. Application development in Java language using client-server architecture: JDBC API, managing database connections, running SQL commands in Java, exception handling, transaction management. XML based application development: structures of XML documents, elements and labels, namespaces, creation of XML documents by XSQL, XSL transformation, XPath expressions, assignment of XSL stylesheets to XML documents. Creation of dynamic web pages using PHP: operation of PHP, scripts, types, variables, operators, arrays, controlling structures, defining functions, predefined variables, most important Oracle functions. (2 credits)

Software engineering

BMEVIIIAB01

The aim of the course is to examine the overall process of software development, including the analysis and design of information systems and the project management issues. On completion of this course students will be able to understand the economic and managerial implications of software projects, have a global view and understanding of the software development, describe the static and dynamic aspects of a real-world system using appropriate modelling techniques, advise on the selection of an appropriate software architecture for a problem, describe the concepts underlying object orientation, use and create UML models, demonstrate the quality of software products created at different stages of the lifecycle. (4 credits)

Software techniques

BMEVIAUB00

The objective of the course is to present up-to-date techniques used in object oriented and event-based software development. The concepts, the structures and the programming of GUI (graphical user interface) and RAD (Rapid Application Development) are presented together with the most important features of modern supervised execution environments and class libraries (reflection techniques, data binding, displaying figures and text, parallel computing basics with related synchronization techniques, etc.). The widely used architectural and design patterns for software development are also covered. Students satisfying the course requirements will be able to develop software on the most widely used platforms with up-to-date tools and technology, having design patterns incorporated. (5 credits)

Software project laboratory

BMEVIIIAB02

The aim of the course is gaining first-hand experience of working in software projects. The goal is to create an object oriented application with full UML (Unified Modeling Language) description, Java implementation, according to RUP (Rational Unified Process) concepts. The students are working on the project in groups of 3 or 4 that are formed by the supervisor. The students are preparing the documentations and program of the game according to the predefined schedule specified at first week. Documentations must be submitted in a predefined format, usually printed. Good understanding of Java and UML are required for successfully finishing the course. (2 credits)

Web and mobile software

BMEVIAUC00

During the course, students get an overview of the latest model platforms and its capabilities. The course teaches the student to be able to choose the most suitable tool and platform for solving a given problem and give the knowledge to estimate the complexity of a project. Furthermore, the method of developing small application for Java Me platform is presented, as well as the basics of Android platform and usage of the Android emulator. The course also presents the method of quick prototype- development method
in Python environment. The following techniques will be described: application structure, basic UI, development compiling and installing. Besides the mobile platform, modern client based web technologies are also presented with the method of developing web applications for devices with small screen and using development tools for multiplatform. (5 credits)

Computer graphics

BMEVIIAB03

Artificial intelligence

BMEVIMIAC00

The aim of the subject is a short, yet substantial presentation of the field of artificial intelligence. The principal presented topics are expressing intelligent behavior with computational models, analysis and application of the formal and heuristic methods of artificial intelligence, and methods and problems of practical implementations. The subject is intended to develop the abilities and skills of the students of informatics in the area of studying novel applications of the computing, developing effective methods to solve computational problems, understanding the technological and conceptual limits of the computer science, and intellectual understanding of the central role of the algorithm in information systems. (4 credits)

IT security

BMEVIIIAC01

This course gives an overview of the different areas of IT security with the aim of increasing the security awareness of computer science students and shaping their attitude towards designing and using computing systems. The course prepares BSc students for security challenges that they may encounter during their professional carrier, and at the same time, it provides a basis for those student who want to continue their studies at MSc level. We put special emphasis on software security and the practical aspects of developing secure programs. (3 credits)

Management of information systems

BMEVITMAC02

The course introduces the students to the tasks of the IT System Administrators. The objective of the course is to teach the maintenance and system administration tasks of computers and networked information systems. The course provides a system level overview about the information systems and about the tasks of system administrators in a broad sense. Among many others, the students will learn basis of the Network and Desktop Management Systems, the data management (data networks, back-up and restore), the virtualization and cloud computing, the service management, the Telecommunications Management Network (TMN), the IT management-related standards, and the security issues. (4 credits)

Integration & verification techniques

BMEVIMIAC04

The subject aims to provide an overview of a variety of information integration systems, and introduces the development and verification techniques of such systems. We discuss the most common integration approaches of distributed data, documents and other type of resources available on the Web. The subject deals with the semantic heterogeneity and structural problems, and unveils the necessary technologies. We analyze in this framework the approaches and technologies of the Semantic Web concept. The subject continues with the discussion of the verification processes and the checking possibilities in the typical development phases. Among the several verification tasks, we focus on the static analysis of the specifications and plans for dealing with static controls, the dynamic verification of the components, and with the tests of integration. The subject ends with the overview of the system testing methods. (4 credits)

Industrial control

BMEVIIIAC03

Industrial control systems are present in fields including packaging, water management, petrochemical processes, manufacturing lines or food and beverage processing. Although seem different, all of these applications share the requirements of accurate measurements and executing appropriate actions based on the state of the process. The first part of the course focuses on sensor technology: methods for temperature, force, pressure, flow, displacement, proximity and level sensing are presented along with transmitters and interfacing signals with control systems. Second part of the course gives a deep overview on PLCs, devices most commonly used in industrial automation systems. Besides the software architecture and programming languages, industrial field bus systems are also presented in details. (4 credits)
Description of MSc Courses

Engineering Management

BMEVITMMB03

Engineering Information Technology

System Optimization

BMEVISZMA02
The subject introduces some areas of operations research and combinatorial optimization. Besides covering the most relevant algorithms and methods and their limits, it also aims at giving a glimpse into some of their engineering applications. Thus the subject also covers some general algorithmic approaches like linear and integer programming and matroid theory. Furthermore, the course aims at extending and deepening the knowledge formerly provided by the Introduction to the Theory of Computing 1 and 2 and the Theory of Algorithms subjects of the BSc degree program in Software Engineering. (4 credits)

Formal Methods

BMEVIMIMA07
As the complexity of information systems and the costs of potential failures are increasing, it becomes more and more important to prove that the design of the critical system components is correct. One of the typical solutions for the challenge of provably correct design is the application of formal methods. Mathematically precise formal models allow the precise and unambiguous specification of requirements and construction of designs; formal verification allows the checking of design decisions and proof of design properties; while the verified models allow automated software synthesis. The subject provides an overview of the formal background needed for the elaboration and analysis of the formal models of IT components and systems: the modelling paradigms, the widely used formal modelling languages, and the related verification and validation techniques. The subject demonstrates the application of formal methods in the field of requirement specification, system and software design, model based verification and source code synthesis. (4 credits)

Information theory

BMEVISZMA03
This course offers an introduction to the quantitative theory of information and its applications to reliable, efficient communication systems. Topics include mathematical definition and properties of information, source coding theorem, theoretical bounds for lossless data compression, optimal data compression methods for both known and unknown distribution of the source, the fundamentals of lossy source coding principles, channel encoding and the main types of multiple access channels. The course lays the foundation for doctoral research in the subject of mobile telecommunications. (4 credits)
Languages and automata
BMEVISZMA04
During the course of the semester we review the basic types of automata and examine their capabilities. Examination of automata is closely related to the examination of formal languages. The objective is the description of the relations between the classic automata and formal languages. Students will learn the theoretical principles to that can be used for the preparation of a compiler. In connection with Turing machines we examine the algorithmic decidability of some theoretical and practical problems and languages. (4 credits)

Computer Engineering
Applied Informatics

Software Development Methods and Paradigms
BMEVIAUMA00
The goal of this course is to teach the software development methodologies, their application possibilities and conditions, practices and tools required and preferred for the design and development of methods. Students become practiced in treating issues of common software architectures and software systems, furthermore, they will have a good knowledge related to software development methods. The course discusses the software development methodologies, the methods and techniques supporting methodologies and development processes, furthermore, practices, architectural requirements and solutions related to software systems. (4 credits)

Distributed Systems and Domain-Specific Modeling
BMEVIAUMA01
The goal of this course is to teach component-based technologies, the usage of middleware services, distributed systems, asynchronous communication, reliability, security, scalability, distributed state handling and monitoring. Furthermore, the goal is to teach domain-specific languages and modeling techniques, model processing and using these techniques in creating software. (4 credits)

Service Oriented System Integration
BMEVIIIMA04
Service-Oriented Architecture (SOA) defines the principles of connecting distributed heterogeneous software components. Web services provide the technology for implementing these principles. Web services are built on open standards. They are based on XML, therefore, they are suitable for connecting different platforms with each other (e.g. .NET and Java). Most platforms provide simple APIs for creating web services. For example, .NET has the library called Windows Communication Foundation (WCF), while Java offers the Java API for XML-based Web Services (JAX-WS) specification. Using these APIs it is very easy to communicate between applications created in different platforms. Enterprise Service Bus (ESB) is a framework for hosting web services, and publishing legacy applications as web services providing a unified platform for interaction between applications. Business entities can also benefit from SOA, since business processes can also be described as web services through the Business Process Execution Language (BPEL). Business processes can also be defined at a higher level using the Business Process Modeling Notation (BPMN). The goal of this subject is to explain the principles behind SOA and to give a deep understanding in the corresponding standards, APIs and technologies. (4 credits)

Business Intelligence
BMEVIAUMA02
The goal of the subject is to give a current knowledge to the students about modern data warehouse building, business intelligence system design, data transformation, reporting, charts, dashboards, data visualization, location based data processing, KPI discovery and churn and fraud detection. (4 credits)

Software and Systems Verification
BMEVIMIMA01
The objective of the course is to present the different verification techniques that can be used throughout the full software and systems development lifecycle. Nowadays such techniques are used not only in critical systems (where their usage are usually mandated by standards), but quality is a requirement for every system. After completing the course, students will have a general understanding of the whole verification process and will know which techniques are recommended for the different phases. They will be able to identify the various static verification techniques, and will be able to review specifications and designs, and to apply static analysis tools on source code. They will be able to list the different levels and methods of software testing, and to use specification and structure based test design techniques. They will know the techniques for verifying extra-functional properties (e.g. modeling and analyzing dependability) and will be able to describe the techniques for runtime verification. (4 credits)

Distributed Systems Laboratory
BMEVIAUMA03
The goal of this course is to give a practical knowledge to the materials learned during Distributed Systems and Domain-Specific Modeling and Software Development Methods and Paradigms. (4 credits)

Computer Engineering
Internet Architecture and Services

Agile Network Service Development
BMEVITMMA01
The course introduces the students to the Agile development method, which is widely used in software development since it can easily react to the frequent changes. The students will be introduced to Extreme Programming (XP), different Agile methods (Scrum, Kanban). They will learn the Continuous Integration (CI) and the typical environments supporting it. The course also gives an overview about testing methodologies, Test Driven Development (TDD), Behaviour Driven Development (BDD) and Model Based Testing (MBT). During the practical classes, the students form Agile teams that develop a software product in the field of Telecommunications. (4 credits)
Cloud Networking
BMEVITMMA02
A cloud platform is a complex system, its architecture consists of many different technological building blocks, where the cloud networking has an important and emerging role. The lectures present the types of cloud computing platforms, the different service models, the applied technologies and management methods focusing mainly on the networking aspects. The networking background of cloud architectures, including network virtualization, tunneling techniques, data center network topologies and the application of Software Defined Networking in clouds are presented. The special requirements of clouds that can provide telecommunication services in the form of Network Function Virtualization are also discussed. (4 credits)

Modeling Seminar for Engineers
BMEVITMMA03
In this course the students face the main engineering challenges and design goals of infocommunication networks from local computer networks to the global Internet. We show through practical examples that how easy to use the algorithmic knowledge they already have for communication network modeling. In specific the course includes examples from the routing and control mechanisms of the Internet, topology design, traffic and bandwidth characterization of networks, some problems from software defined and virtual networks, and shows how the theoretical tools the students already have can be applied for these practical engineering problems. (4 credits)

Internet Services and Applications
BMEVITMMA04
The course will give a thorough overview of application-specific, content-centric and collaborative services, the challenges of the Internet as a service and application development platform, and its service models. The technology foundations necessary for service implementation are also covered, including service quality issues as well. Use cases from different application areas are discussed to show the process of service planning and implementations well as the method to build successful business models. An Internet architect will be able to develop efficient network services satisfying the required service quality. During the course project homework the students will gain experience in practice as well. (4 credits)

Sensor networks and applications
BMEVITMMA09
The “intelligence” of the so-called smart environments (smart city, smart office, smart home) is largely depends on the sensors integrated into physical objects (walls, surface of roads, etc.) or carried by the users (e.g., intelligent user devices, wearable devices). Sensors monitor the surrounding physical environment continuously, gather raw measurement data that is communicated towards the application. To do this, an efficient sensor networking environment has to be set up. The course will give a thorough overview of wireless sensor networking, from the physical devices up to the networking and application layers. Application areas that are connected to smart cities and intelligent transport systems are emphasized. (4 credits)

Intelligent traffic systems
BMEVITMMA10
The aim of the course is to present the technologies used and current trends in the field of intelligent transport systems. The students will learn the principles of vehicular systems, the technologies deployed in vehicles and the supporting infrastructure. They will understand how these technologies support the Smart Cities. During practical courses the students will have to understand a selected technology and the application built on it, and implement their own services using the publicly available interfaces. (4 credits)

Human-machine interface
BMEVITMMA11
The aim of the subject is to introduce visual and speech interface technologies to students in Human Computer Interaction. The course will introduce in detail the elements of the user interface, the basic principles of software ergonomics, the evaluation methods of software from an ergonomic point of view. Parallel to introduction to the principles of theory, practical classes are also held. Students will demonstrate the comprehension of the material by solving practical problems. By the end of the course students will learn the basic principles necessary for the design, testing and evaluation of user interfaces. They could employ that knowledge during their future work career. (4 credits)

Cloud Computing
BMEVIIIMA05
The basic objective of the course is introducing the basics of the modern computing cloud systems and cloud based applications. The students learn about the virtualization techniques and software solutions, protocols, standards and interfaces, which advanced the development of cloud-based services can be used in practice. They learn about the cloud-based IT systems design, development, operation, and quality control methods and tools. The students receive comprehensive information on the most commonly used approaches, models, standards related to software quality. Students learn about the characteristics of the software product and the product manufacturing process and should be interpreted taking into account the characteristics of the cloud-based systems can. They understand the similarities and differences between ISO 9001, CMMI, SPICE and auditing structure, will be able to more software quality model is applied in an integrated manner. (4 credits)

High Performance Parallel Computing
BMEVIIIMA06
The basic objective of the course is introducing the very intensive and high-performance computing solutions which are needed of engineering and research tasks. The students will learn about the supercomputing architecture classes, the supercomputer software components and programming languages. The students get acquainted with the subject of networking solutions that use the most powerful machines (TOP500) as well. They learn about the various co-processors and storage systems. The purpose of the object is important to give a comprehensive picture of the use, programming, control and operation of these systems as well. (4 credits)
GPGPU Applications

BMEVIIMB01
The course presents the possibility of general purpose use of the computational power of graphics boards thanks to a generalized model of their GPUs. The hardware architecture of graphic processors is presented together with the general purpose OpenCL software development environment. Algorithms suitable to massively parallel implementation are presented using practical examples. Topics studied in detail include: operations on big amount of data, parallel primitives in the OpenCL environment, solution of a set of linear equations, physical simulation on GPU, hash based parallel algorithms, Monte Carlo methods in GPU, optimization issues of GPGPU algorithms, effective cooperation with graphical APIs, special questions of multi GPU and distributed systems. (4 credits)

Electrical Engineering

Smart city laboratory

BMEVIIMM804
Smart City Laboratory is a part of the Smart City specialization of the Electrical Engineering MSc. course. The goal of this laboratory subject is to present some interesting and noteworthy elements from the huge set of software and hardware building blocks which support the concept of smart city. Students can learn the programming sensors and sensor networks as well as the usage of microcontrollers to control these sensors and to process data collected by them. Moreover the subject has two exercises about the construction of applications in an Augmented Reality environment and the usage of a gesture control device, respectively. (2 credits)

Physics 3

BMETE11MX33
The course covers introduction to two disciplines: Quantum Mechanics and Solid State Physics. After the semester students should be able to understand the basic principles behind these two disciplines and solve some simple problems. This will contribute to the understanding of the workings of modern electronics and nanotechnology. (4 credits)

Measurement theory

BMEVIMA17
The subject discusses the theoretical background as well as the qualitative and quantitative characterization of the engineering methods used for studying the physical world around. It gives an overview of the basic methods of signal and system theory, estimation and decision theory, as well as of the most important data- and signal processing algorithms. The main goal of the subject is to show how different tasks such as complex measurement problems, modelling and information processing problems, etc. can be solved using this theoretical background. The knowledge discussed in the subject gives a general basis for solving research and development problems too. (4 credits)

Linear algebra (Advanced Mathematics for Electrical Engineers)

BMETE90MX54

Combinatorial optimization (Advanced Mathematics for Electrical Engineers)

BMEVISZMA06
The subject introduces some areas of operations research and combinatorial optimization. Besides covering the most relevant algorithms and methods and their limits, it also aims at giving a glimpse into some of their engineering applications. Thus the subject also covers some general algorithmic approaches like linear and integer programming and matroid theory. Furthermore, the course aims at extending and deepening the knowledge formerly provided be the Foundations of Computer Science subject of the BSc degree program in Electrical Engineering. (3 credits)

Communication Theory

BMEVIHMMA07
Widespread concepts of and tasks to be solved by telecommunications can be described by a more or less unified theory, that are the objectives of the Communication Theory. Aim of this subject is to present basics of and applied approaches in this theory. Main topics dealt with are information theory, decision- and estimation theory as well as theory of digital communications including source coding, channel coding, modulations, and performance of noisy channels. In this framework students get acquainted with important concepts, methods and procedures. Application of these concepts is presented via a detailed discussion of practical examples taken from the techniques of wireless and optical communication. Lectures, exercises as well as tests are put together so to prepare students for being able to understand and apply these concepts. Thus understanding of new or novel systems is relatively easy for them; also they get the basis for following more specialized subjects in later semesters as well as in solving novel tasks during their career. (4 credits)

Electrical Engineering Embedded Systems

High performance controllers

BMEVIAUMA07
Wide inside is given of the computer system architectures, high performance microcontroller architectures and their building blocks. Conventional architectures are analyzed then special architectures (ARM, DSP, network and graphic processors, GPGPU) are dealt with and compared with the SoC devices with soft and hard processors. Methods increasing the performance, security and reliability, decreasing power consumption are treated. Mechanical, electrical and
logical aspects of bus systems connecting parts of control systems are treated in detail. Diagnostic methods of WEB, mobile, etc. based control systems are also introduced. (4 credits)

SW technology for embedded systems

BMEVIMIMA09

The subject introduces the students to the modern technologies used in developing embedded software for better software quality. The introduction is both theoretical and practical. The subject shows why modern embedded software systems are complex, it lists the consequences of complexity and details how we handle complexity in this context, and how we define and increase software quality. The subject then iterate through the modern solutions available to keep control over the software development process, and how we can increase software quality. These modern solutions are introduced, and its properties are investigated using both a theoretical and a practical approach by programming examples. (4 credits)

Computer vision systems

BMEVIMIMA07

Aim of this course is to transfer knowledge about most important techniques of computer vision. This includes simple methods for daily use and more complex ones as well. Theory and Practice are kept in balance. The areas and methods covered by this course are not complete. Our aim is to help the students to be able to understand the alternatives of the discussed methods to the extent necessary for choosing among them in the perspective of theory and praxis. The topics of the course have been separated into three parts as follows: two- and three-dimensional vision and real time image processing covering the right choice of paradigms and image processing hardware components. (4 credits)

Development of SW applications

BMEVIAUMA09

The goal of the course is to introduce those software development tools and practices which are essential for larger scale development projects. This includes the higher level class libraries, automatic testing and continuous integration tools, version control and documentation tools. Special configuration options of the compiler and deployment procedures, and cloud services for server side applications. Beside these, the course emphasizes the use of these techniques in embedded system development and its special requirements. (4 credits)

Design & integration of embedded systems

BMEVIMIMA11

The aim of the subject is the presentation of the basic methods that are needed for the systematic development of embedded systems. First, the following topics are discussed: development life cycle models (e.g., V-model, iterative models), quality assurance, project planning, requirements traceability, version control and configuration control methods. Among system development methods, the subject presents the hardware-software co-design and component integration techniques, based on the previously studied technologies and building blocks, emphasizing also the model-based design approaches. The subject also covers the specific design methods for safety-critical embedded systems in which the malfunctions may lead to hazards, or in case of given environmental conditions even to accidents or damages. Such safety-critical systems are used for example in transportation, vehicles, medical equipment or process control systems. The students will be familiar with the architectural concepts (that are often referred in related standards), the techniques of safety and dependability analysis (that are needed to assess the design decisions), as well as the techniques of systematic verification. The exercises present concrete tools and techniques to support the typical tasks in requirement management, configuration control, source code analysis, unit testing, integration testing, system testing, hazard analysis and model based design. (4 credits)

Embedded systems laboratory 1

BMEVIMIMA12

The laboratory exercises present the modern, up to date technologies which are used for the design of embedded systems. The student thus get acquainted with FPGA based system design, efficient software development on dedicated digital signal processors and with high level, model-based virtual instrumentation using LabVIEW. The laboratory exercises also consist of setting up and solving real tasks by utilizing the before mentioned techniques. (4 credits)

Electrical Engineering Multimedia Systems and Services

Mobile and wireless networks

BMEVIMIMA07

The objective of this course is to introduce today’s modern wireless and mobile systems to our students. This contains basic knowledge needed to operate and maintain such networks. Further goal of this subject is to show the possibilities and operations of advanced radio and wireless solutions, through practical examples. (4 credits)

Broadband Wireless Telecommunication and Broadcasting Systems

BMEVIMIMA01

The objective of the subject is to develop design, modeling and analysis skills related to the physical layer of wideband fixed, mobile communications and broadcasting systems of the future. Four major topics are discussed. The first one covers some special aspects of digital communication: spectral-efficient coding methods (high order QAM modulations, CP, OFDM and FBMC), coded modulation systems and spread spectrum systems, as well as multiple access methods (CDMA, FDMA, TDMA, SDMA). The second part of the subject explains the properties of terrestrial and satellite microwave bands, fixed and broadcasting radio channels (WSSUS model), including also (multi)point-to-(multi)point transmissions (e.g. MIMO). The third part of the subject introduces specific terrestrial, cable and satellite broadcasting systems (mainly DAB, DVB and DRM variants), along with BFWA networks. Convergence between cellular and broadcasting networks is also considered (including SDR, LTE, 5G, DVB IP, DVB RCT/RCC/RC5). The fourth part gives in-depth knowledge about the test and measurement techniques of state-of-the-art digital broadcasting and communication systems, covering frequency domain and time domain measurements, modulation analysis and bit error / packet error related tests. The baseband representation of these systems is also discussed along with modeling and simulation methods, extending also to the generation of real and complex signals featuring specific stochastic characteristics. (4 credits)

Foundations of multimedia technologies

BMEVIEEMA08

The course gives an overview of modern media communication system architectures, coding and modulation techniques, media service customer behavior and user devices. This course allows students to get acquainted with the capabilities of different media capture, storage, delivery and display solutions. (4 credits)

Laboratory on Multimedia Systems and Services 1

BMEVIEEMA10

The aim of this laboratory course is to extend the knowledge learnt in Foundations of multimedia technologies lecture and improve practical skills. Technical methods and solutions for mobile and media communication systems are studied in this course. (4 credits)

Electrical Engineering

Electric Power Systems

Power system operation and control

BMEVIVEMA01

The course is intended to provide theoretical knowledge and practical skills in the following fields: system approach of power system design, operation and control, understanding of related physical phenomena and processes and devices capable of influencing these processes, application of the theoretical knowledge in computer aided design, control and safe operation. (4 credits)

Electrical systems of sustainable energetic

BMEVIVEMA02

The purpose of the subject is to give information for the students about the problems of ageing in the power system. Basics of asset management, monitoring and diagnostic methods, live line management (including the economic questions) is also presented. Electric and magnetic field acting on the workers and the protection against their harmful effects are also in the focus. Further topics are also involved in the subject, like special energy converters of renewable energy systems, like double-fed asynchronous generator, motor. Special energy converters of large scale energy storing are also part of the subject as well as the integration of renewables into the renewable energy system. (4 credits)

Power system transients

BMEVIVEMA03

The aim of the course is to provide theoretical knowledge and practical skills for computer based modelling of power system transients including understanding physics of electromagnetic wave propagation on multiphase power lines, being familiar with the origin of transients and their consequences, understanding transients appearing at abnormal system conditions, like switching on or off, during short-circuit or fault clearing. Students will be familiar with design practices and protection principles against overvoltages in order to be skilled about advanced solution methods to reduce the risk of failures. They will have an opportunity to learn how to operate modern power system transient simulation software tools and how to create digital models and evaluate the results obtained by computer simulation. (4 credits)

Protection systems and measurement technology

BMEVIVEMA04

The aim of the course is to provide theoretical knowledge and practical skills for understanding principles and settings of protections used for parry of failure in power systems, power plants, industrial and communal systems, being familiar with measurement technology, digital signal processing, as well as intelligent protections and introducing functions and constructions of operational and malfunction automatics which provide reliable operation of the power system. (4 credits)

Electric energy market

BMEVIVEMA05

Aim of the course is to lecture the students the basic principles, stakeholders and their connections, market designs, the technical, legal and commerce rules of the electricity markets that have already been deeply integrated with the operation and control of the electricity power systems, along with the economic principles, price trends of the commodities and services and the investment promoting techniques of the power markets. After successfully completing the course the learnt basics of the methods and approaches applied in the Hungarian and the European energy markets gives the students the possibility to have the required competences to join the workforce of an energy trading, a market oriented services, distribution or system operator corporation. (4 credits)

Fundamentals of smart systems

BMEVIEEMA04

The course aims to develop a detailed knowledge and critical understanding of Smart Systems technologies and the physics of MEMS devices. A significant range of principal and specialist skills will be developed in the fields of Smart Systems manufacturing technology, and its applications in MEMS and bio-MEMS devices. During the laboratory work the students are getting familiar with the numerical modeling and analysis by the use of a cutting edge simulation tools. (4 credits)

System level design

BMEVIEEMA05

The subject presents the design, implementation and verification of digital hardware. Various concepts and tools are presented, including alternatives of digital system relatiization, automationization, silicon compilers, simulation methods, system level modelling. The languages hardware modellign languages SystemC, CatapultC, VHDL, Verilog, and Verilog-AMs are introduced. The actual trends are also discussed, e.g. hardware-software co-design, IC and MES co-design, MMS integration. The subject also includes computer-based design demonstrations and practices. (4 credits)

Circuit environment

BMEVIEEMA06

The scope of the subject is to get the students acquainted with the development of the packaged intelligent devices operating environment, the design software, the modern simulation tools. Deals with the design, testing, simulation steps and gives practical knowledge on their industrial applications. The whole process development flow is described, including basics steps of the developments, test methods, reliability investigations, and the effects of the ambient to
the operation of the circuit. The subject also introduces to signal integrity, e.g., plane capacitance, losses, delays, skin effect and proximity effect, wave impedance and passive devices in real parasitic elements. (4 credits)

Smart systems design laboratory

BMEVIEEMB00

The laboratory practice covers the complete design flow of IC and MEMS co-design. A workgroup of students are designing a Smart System solution including MEMS sensors and actuators and the relevant CMOS circuitry. The laboratory practice is built on the lecture course of System Level Design. Up to date industry standard software CAD tools are utilized thanks to the EU and international support. (2 credits)
Introduction

The Mechanical Engineering Program at the Budapest University of Technology and Economics began in 1863, and the Faculty of Mechanical Engineering was established soon afterward, beginning official operations in the 1871/72 academic year. The Faculty is justly proud of its continuous, progressive and more than 140-year history and now offers undergraduate and graduate programs in both Hungarian and English.

The Faculty of Mechanical Engineering offers a seven-semester undergraduate BSc degree program in English. Two specializations, 1) Engineering Design and Technology, and 2) Process Engineering give the students alternatives from the 5th semester. A two-year graduate program in English - Mechanical Engineering Modeling - leading to an MSc degree started in February 2009, and students can start their study either in the fall or in the spring semester. Individual postgraduate academic and research programs, which are usually completed in three to four years, are available for those who already have an MSc degree and wish to pursue a PhD degree.

The undergraduate BSc program of the Faculty of Mechanical Engineering is designed to continue a tradition of excellence by:

- providing well-grounded and broad knowledge that graduates of this Faculty can apply immediately in their work and also use as the basis for further studies; and
- graduating competent engineers who are not only masters of their profession, but also possess an ethical philosophy of engineering based on accuracy, punctuality and reliability as well as a respect for the human element.

The goals of our MSc and PhD programs are as follows:

- to train creative, inventive mechanical engineers who can apply the engineering skills and the knowledge they have gained from the natural sciences on a state-of-the-art level; and
- to foster the development of leaders in engineering research and development.

The courses in the Mechanical Engineering Modeling MSc-program deal with those time-dependent problems of mechanical engineering, which typically require the efficient modeling of tasks in order to access the continuously developing methods of computational engineering. As the joke says: ‘One designed by a civil engineer starts moving that is bad, one designed by a mechanical engineer does NOT move that is bad, too.’ Modern computational methods are very popular since they show their easy-to-use interface for engineers. This often causes misunderstanding and disappointment during the naïve applications of engineering software. Computational methods are reliable if they are properly tested and the principles of their applied algorithms and procedures are understood. This is analogous to the modern cartoon industry: the 25 pictures of one second of a cartoon can be drawn by computers if the first and the last picture of that second are designed for them by the artist but the computers will totally fail if they have to draw the cartoon without any reference picture, or based on the first (or last) picture only.

The tasks of mechanical engineers that typically require the modeling of machines in motion and that of time-varying processes are based on solid and fluid mechanics, thermodynamics and electronics. Modeling means the understanding and active application of the related theories, which are supported by differential equations and numerical methods in mathematics. Modeling needs also experimental work during the research-development-innovation process, in case engineers do not have enough information about the motions and processes they want to capture by a model. Finally, modeling is also affected by the engineers knowledge in design, technology, and informatics, since the model should not be so complex that the available software is unable to solve them within reasonable time and for reasonable cost.

The above principles affected the formation of this master course. After the brief summary of the required fundamental courses (mathematics, mechanics, thermodynamics, electronics, control and informatics), the students have to choose a major and a minor specialization from the following list of modules:

The possible combinations provide flexibility among more research-oriented knowledge (combinations of the first 3 modules), and the development-oriented one (major from modules 1-3 and module 4 as minor or vice versa).

This course is running in English only. It is based on the foundations provided by the long-standing positive traditions of some former successful courses of the Faculty of Mechanical Engineering at BME.

This course is also compatible to many master courses in mechanical engineering in the European Union (see, for example, U Bristol, U Bath, ENS Cachan, TU Karlsruhe, U Hannover, TU Munich).

Our Faculty offers its engineering education excellence rooted in, and being fully aware of its unique position of training decision makers, and technological leaders of tomorrow. Our aim in the course of the training is to qualify our graduates to perform as competent problem solvers, good communicators, excellent team workers, successful project leaders, and - above all - ethical participants of the world around them – both locally and globally.

Departments:

- Department of Materials Science and Engineering
- Department of Fluid Mechanics
- Department of Energy Engineering
- Department of Building Service Engineering and Process Engineering
- Department of Machine and Industrial Product Design
- Department of Manufacturing Science and Engineering
- Department of Hydrodynamics Systems
- Department of Mechatronics, Optics and Mechanical Engineering Informatics
- Department of Applied Mechanics
- Department of Polymer Engineering
Curriculum of BSc Subjects
Process Engineering Specialization

<table>
<thead>
<tr>
<th>Subject</th>
<th>lectures/practical lectures/laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Code</td>
</tr>
<tr>
<td>1st semester, Fall</td>
<td></td>
</tr>
<tr>
<td>Compulsory English I.</td>
<td>BMEGT63A301</td>
</tr>
<tr>
<td>Descriptive Geometry</td>
<td>BMETE90AX06</td>
</tr>
<tr>
<td>Introduction to Mechanical Engineering</td>
<td>BMEGEVGAG01</td>
</tr>
<tr>
<td>Information Systems</td>
<td>BMGERIA311</td>
</tr>
<tr>
<td>Macro- and Microeconomics</td>
<td>BMGT30A001</td>
</tr>
<tr>
<td>Mathematics A1a - Calculus</td>
<td>BMTE90AX00</td>
</tr>
<tr>
<td>Technical Chemistry</td>
<td>BMVEKTAGE1</td>
</tr>
<tr>
<td>Statics</td>
<td>BMEGEMMAGM1</td>
</tr>
<tr>
<td>Total credits:</td>
<td></td>
</tr>
<tr>
<td>2nd semester, Spring</td>
<td></td>
</tr>
<tr>
<td>Compulsory English II.</td>
<td>BMEGT63A302</td>
</tr>
<tr>
<td>Materials Science and Testing</td>
<td>BMEGEMTAGEK1</td>
</tr>
<tr>
<td>Fundamentals of CAD</td>
<td>BMEGEVEAGM1</td>
</tr>
<tr>
<td>Physics A2</td>
<td>BMETE15AX02</td>
</tr>
<tr>
<td>Fundamentals of Machine Design</td>
<td>BMEGEVEAGM1</td>
</tr>
<tr>
<td>Mathematics A2a - Vector Functions</td>
<td>BMTE90AX02</td>
</tr>
<tr>
<td>Software Engineering</td>
<td>BMGERIA32P</td>
</tr>
<tr>
<td>Strength of Materials</td>
<td>BMEGEMMAGM2</td>
</tr>
<tr>
<td>Total credits:</td>
<td></td>
</tr>
<tr>
<td>3rd Semester, Fall</td>
<td></td>
</tr>
<tr>
<td>Dynamics</td>
<td>BMEGEMMAGM3</td>
</tr>
<tr>
<td>Materials Engineering</td>
<td>BMEGEMTAGEK1</td>
</tr>
<tr>
<td>Physics A3</td>
<td>BMETE15AX03</td>
</tr>
<tr>
<td>Machine Elements 1.</td>
<td>BMEGEMEAGG1</td>
</tr>
<tr>
<td>Environmental Management Systems</td>
<td>BMGT42A003</td>
</tr>
<tr>
<td>Mathematics A3 for Mechanical Engineers</td>
<td>BMTE90AX10</td>
</tr>
<tr>
<td>Mathematics Global Exam</td>
<td>BMTE90AX23</td>
</tr>
<tr>
<td>Analysis of Technical and Economical Data</td>
<td>BMEGEVGAG14</td>
</tr>
<tr>
<td>Measurement Technology</td>
<td>BMEGEMMAGM1</td>
</tr>
<tr>
<td>Total credits:</td>
<td></td>
</tr>
<tr>
<td>4th semester, Spring</td>
<td></td>
</tr>
<tr>
<td>Basics of Electrical Engineering</td>
<td>BMETAMAGG07</td>
</tr>
<tr>
<td>Machine Elements 2.</td>
<td>BMEGEGEAGG2</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>BMEGEGTAGEK1</td>
</tr>
<tr>
<td>Control Engineering</td>
<td>BMEGEMIAGE1</td>
</tr>
<tr>
<td>Engineering Thermodynamics</td>
<td>BMEGEENAETD</td>
</tr>
<tr>
<td>Polymer Materials Science and Engineering</td>
<td>BMEGEGPTAG0P</td>
</tr>
<tr>
<td>Vibrations</td>
<td>BMEGEMMAGM4</td>
</tr>
<tr>
<td>Mechanics Global Exam</td>
<td>BMEGEMMAGM0</td>
</tr>
<tr>
<td>Total credits:</td>
<td></td>
</tr>
<tr>
<td>5th Semester, Fall</td>
<td></td>
</tr>
<tr>
<td>Electromechanics</td>
<td>BMETMAIAA08</td>
</tr>
<tr>
<td>Fluid Mechanics</td>
<td>BMEGÉÁTAGE1</td>
</tr>
<tr>
<td>Heat Transfer</td>
<td>BMEGÉNAMH1</td>
</tr>
<tr>
<td>Diffusion Processes</td>
<td>BMEGÉVEAG02</td>
</tr>
</tbody>
</table>

* e - exam, p - practical, ge - global exam
Subject Lectures/Practical Lectures/Laboratory

<table>
<thead>
<tr>
<th>Name</th>
<th>Code</th>
<th>Credits</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>Requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement at Energy and Environment Protection</td>
<td>BMEGEENAG51</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>p</td>
</tr>
<tr>
<td>Measurement Technique of Processes</td>
<td>BMEGEVGAG03</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>p</td>
</tr>
<tr>
<td>Fundamentals of FEM</td>
<td>BMEGEMMAGM5</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>p</td>
</tr>
<tr>
<td>Management and Business Economics</td>
<td>BMEGT20A001</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>p</td>
</tr>
<tr>
<td>Business Law</td>
<td>BMEGT55A001</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>p</td>
</tr>
<tr>
<td>Optional subject:</td>
<td></td>
</tr>
<tr>
<td>Marketing (2 credits) OR</td>
<td>BMEGT20A002</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>p</td>
</tr>
<tr>
<td>Communication Skills - English (2 credits)</td>
<td>BMEGT63A061</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>p</td>
</tr>
</tbody>
</table>

Total credits: 31

6th Semester, Spring

<table>
<thead>
<tr>
<th>Subject</th>
<th>Code</th>
<th>Credits</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>Requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Acoustics and Noise Control</td>
<td>BMEGÉATAG15</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2/0/1</td>
<td></td>
<td></td>
<td>e</td>
</tr>
<tr>
<td>Fluid Machinery</td>
<td>BMEGEVGAG02</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2/1/1</td>
<td></td>
<td></td>
<td>e</td>
</tr>
<tr>
<td>Heat Engines</td>
<td>BMEGEENAECk</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2/1/1</td>
<td></td>
<td></td>
<td>e</td>
</tr>
<tr>
<td>Numerical Simulation of Fluid Flows</td>
<td>BMEGÉATAG06</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/0/1</td>
<td></td>
<td></td>
<td>p</td>
</tr>
<tr>
<td>Processes and Equipments of Chemical Industry</td>
<td>BMEGEVÉAG03</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/2/0</td>
<td></td>
<td></td>
<td>e</td>
</tr>
<tr>
<td>Air Pollution, Wastewater and Solid Waste Man.</td>
<td>BMEGÉATAG04</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/0/3</td>
<td></td>
<td></td>
<td>p</td>
</tr>
<tr>
<td>Independent Study 1</td>
<td>BMEGEVGAG06</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0/0/4</td>
<td></td>
<td></td>
<td>p</td>
</tr>
<tr>
<td>Optional subject:</td>
<td></td>
</tr>
<tr>
<td>Heating (4 credits) OR</td>
<td>BMEGÉEPAG61</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/1/0</td>
<td></td>
<td></td>
<td>e</td>
</tr>
<tr>
<td>Manager Communication (2 credits) AND</td>
<td>BMEGT63A081</td>
<td>0/2/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>p</td>
</tr>
<tr>
<td>Crosscultural Communication (2 credits)</td>
<td>BMEGT63A091</td>
<td>0/2/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>p</td>
</tr>
</tbody>
</table>

Total credits: 29

7th Semester, Fall

<table>
<thead>
<tr>
<th>Subject</th>
<th>Code</th>
<th>Credits</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>Requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluid Flow Systems</td>
<td>BMEGEVGAG07</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2/1/0</td>
<td></td>
<td></td>
<td>p</td>
</tr>
<tr>
<td>Energy Processes and Equipm.</td>
<td>BMEGEENAG71</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/0/2</td>
<td></td>
<td></td>
<td>p</td>
</tr>
<tr>
<td>Volumetric Pumps and Compressors</td>
<td>BMEGEVGAG04</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/1/0</td>
<td></td>
<td></td>
<td>p</td>
</tr>
<tr>
<td>Measurement for Chemical and Environment Proc.</td>
<td>BMEGEVÉAG04</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0/1/2</td>
<td></td>
<td></td>
<td>p</td>
</tr>
<tr>
<td>Final Project</td>
<td>BMEGEXXAA5D</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0/10/0</td>
<td></td>
<td></td>
<td>p</td>
</tr>
<tr>
<td>Optional subject:</td>
<td></td>
</tr>
<tr>
<td>Air-Conditioning (4 credits)</td>
<td>BMEGÉEPAG62</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2/2/0</td>
<td></td>
<td></td>
<td>e</td>
</tr>
</tbody>
</table>

Total credits: 32

The Faculty of Mechanical Engineering offers additional and optional courses (30 credits - upgrade to 240) on BSc level to its students - who completed 210 credits - to take.

Optional Subjects

<table>
<thead>
<tr>
<th>Subject</th>
<th>Code</th>
<th>Credits</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>Requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modeling of Processes and Equipment</td>
<td>BMEGÉEAG01</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/1/0</td>
<td></td>
<td></td>
<td>p</td>
</tr>
<tr>
<td>Laboratory</td>
<td>BMEGÉEAG00</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0/0/4</td>
<td></td>
<td></td>
<td>p</td>
</tr>
<tr>
<td>Independent Study 2</td>
<td>BMEGEVGAP2</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0/0/8</td>
<td></td>
<td></td>
<td>p</td>
</tr>
<tr>
<td>Heating</td>
<td>BMEGÉEPAG61</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/1/0</td>
<td></td>
<td></td>
<td>e</td>
</tr>
<tr>
<td>Manager Communication (2 credits)</td>
<td>BMEGT63A081</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0/2/0</td>
<td></td>
<td></td>
<td>p</td>
</tr>
<tr>
<td>Crosscultural Communication</td>
<td>BMEGT63A091</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0/2/0</td>
<td></td>
<td></td>
<td>p</td>
</tr>
<tr>
<td>English for Engineers</td>
<td>BMEGT63A051</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0/4/0</td>
<td></td>
<td></td>
<td>p</td>
</tr>
<tr>
<td>Analytical Mechanics</td>
<td>BMEGEMMWM01</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/0/0</td>
<td></td>
<td></td>
<td>e</td>
</tr>
<tr>
<td>Advanced Fluid Mechanics</td>
<td>BMEGÉATMWM01</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/0/0</td>
<td></td>
<td></td>
<td>e</td>
</tr>
<tr>
<td>Advanced Thermodynamics</td>
<td>BMEGÉENWMAT</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2/1/0</td>
<td></td>
<td></td>
<td>e</td>
</tr>
<tr>
<td>Power Electronics</td>
<td>BMEVIAUA017</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2/1/1</td>
<td></td>
<td></td>
<td>p</td>
</tr>
<tr>
<td>Motion Control</td>
<td>BMEVIAUA016</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2/0/1</td>
<td></td>
<td></td>
<td>p</td>
</tr>
</tbody>
</table>

XX in the Final Project code varies from department to department. e - exam, p - practical mark, ge - global exam.
Curriculum of BSc Subjects
Engineering Design and Technology Specialization

<table>
<thead>
<tr>
<th>Subject</th>
<th>Code</th>
<th>Credits</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>Requisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Semester, Fall</td>
<td></td>
</tr>
<tr>
<td>Compulsory English I.</td>
<td>BMET63A301</td>
<td>2</td>
<td>0/4/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Descriptive Geometry</td>
<td>BMET69AX06</td>
<td>3</td>
<td>1/2/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>Introduction to Mechanical Engineering</td>
<td>BMET69GAG01</td>
<td>4</td>
<td>2/1/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>Information Systems</td>
<td>BMET69A311</td>
<td>4</td>
<td>2/0/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Macro- and Microeconomics</td>
<td>BMET30A001</td>
<td>4</td>
<td>4/0/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>Mathematics A1a - Calculus</td>
<td>BMET69AX00</td>
<td>6</td>
<td>4/2/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>Technical Chemistry</td>
<td>BMET69A32P</td>
<td>3</td>
<td>2/0/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Statics</td>
<td>BMET69MAGM1</td>
<td>3</td>
<td>1/1/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Total credits:</td>
<td></td>
<td></td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2nd Semester, Spring											
Compulsory English II.	BMET63A302	2	0/4/0							p	
Materials Science and Testing	BMET69TAGK1	6	4/0/1							e	
Fundamentals of CAD	BMET69A3CD	4	1/0/2							p	
Physics A2	BMET69AX02	2	2/0/0							e	
Fundamentals of Machine Design	BMET69A3CM	4	2/2/0							p	
Mathematics A2a - Vector Functions	BMET69AX02	6	4/2/0							e	
Software Engineering	BMET69A32P	2	0/2/0							p	
Strength of Materials	BMET69MAGM2	5	2/2/0							e	
Total credits:			31								

3rd Semester, Fall											
Dynamics	BMET69MAGM3	5	2/2/0							e	
Materials Engineering	BMET69TAGK2	4	3/0/1							e	
Physics A3	BMET69AX03	2	2/0/0							e	
Machine Elements 1.	BMET69A3CM	5	2/1/1							e	
Environmental Management Systems	BMET69A003	3	3/0/0							p	
Mathematics A3 for Mechanical Engineers	BMET69AX10	4	2/2/0							p	
Mathematics Global Exam	BMET69AX23										ge
Analysis of Technical and Economical Data	BMET69A314	3	2/1/0							p	
Measurement Technology	BMET69MAGM1	3	2/0/1							p	
Total credits:			29								

4th Semester, Spring											
Basics of Electrical Engineering	BMET69UA007	3	2/0/1							p	
Machine Elements 2.	BMET69AGG2	6	3/1/1							e	
Manufacturing	BMET69TAG01	5	2/0/3							e	
Control Engineering	BMET69MAGE1	4	2/2/0							e	
Engineering Thermodynamics	BMET69AENETD	3	2/1/0							p	
Polymer Materials Science and Engineering	BMET69PTAGP	6	3/0/2							e	
Vibrations	BMET69MAGM4	3	2/1/0							p	
Mechanics Global Exam	BMET69MAGM0										ge
Total credits:			30								

<p>| 5th Semester, Fall | | | | | | | | | | | |
| Electromechanics | BMET69UA008 | 4 | 2/1/1 | | | | | | | e |
| Fluid Mechanics | BMET69AETAG1 | 5 | 2/2/1 | | | | | | | p |
| Heat Transfer | BMET69AENAHK | 4 | 2/2/0 | | | | | | | e |
| Injection Molding | BMET69AGTAGE2 | 3 | 1/1/1 | | | | | | | p |
| Total credits: | | | 30 | | | | | | | |</p>
<table>
<thead>
<tr>
<th>Subject</th>
<th>Code</th>
<th>Credits</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>Requisities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamentals of FEM</td>
<td>BMEGEMMAGM5</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>1/1/1</td>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Manufacturing Processes</td>
<td>BMEGEGTAGC91</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>2/0/1</td>
<td></td>
<td></td>
<td></td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>Metal Forming</td>
<td>BMEGEMTAGE1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>2/0/1</td>
<td></td>
<td></td>
<td></td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>Business Law</td>
<td>BMEGT55A001</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>2/0/0</td>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Optional subject:</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>2/0/0</td>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Marketing (2 credits) OR</td>
<td>BMEGT20A002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2/0/0</td>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Communication Skills - English (2 credits)</td>
<td>BMEGT63A061</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>0/2/0</td>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Total credits:</td>
<td></td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6th Semester, Spring

<table>
<thead>
<tr>
<th>Subject</th>
<th>Code</th>
<th>Credits</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>Requisities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Novel Engineering Materials</td>
<td>BMEGEMTAGE3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>2/0/0</td>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Fluid Machinery</td>
<td>BMEGEVGAG02</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>2/1/1</td>
<td></td>
<td></td>
<td></td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>Heat Engines</td>
<td>BMEGEENAE02</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>2/1/1</td>
<td></td>
<td></td>
<td></td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>Machine Design</td>
<td>BMEGEGEAGMD</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>2/1/0</td>
<td></td>
<td></td>
<td></td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>Machine Tools and Manufacturing Systems</td>
<td>BMEGEGT92</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>2/0/0</td>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Composites Technology</td>
<td>BMEGEPTAGE1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>2/0/1</td>
<td></td>
<td></td>
<td></td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>Project Work</td>
<td>BMEGEGEAGPW</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>0/1/2</td>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Optional subject:</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heating (4 credits) OR</td>
<td>BMEGEÉPAG61</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>3/1/0</td>
<td></td>
<td></td>
<td></td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>Manager Communication (2 credits) AND</td>
<td>BMEGT63A081</td>
<td>0/2/0</td>
<td></td>
<td></td>
<td></td>
<td>0/2/0</td>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Crosscultural Communication (2 credits)</td>
<td>BMEGT63A091</td>
<td>0/2/0</td>
<td></td>
<td></td>
<td></td>
<td>0/2/0</td>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Total credits:</td>
<td></td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7th Semester, Fall

<table>
<thead>
<tr>
<th>Subject</th>
<th>Code</th>
<th>Credits</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>Requisities</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAD Systems</td>
<td>BMEGEAEGCS</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>1/0/2</td>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Non-Destructive Testing of Materials</td>
<td>BMEGEMTAGE2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>2/0/0</td>
<td></td>
<td></td>
<td></td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>CAD/CAM Applications</td>
<td>BMEGEGT93</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>1/0/2</td>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Polymer Processing</td>
<td>BMEGEPTAGE3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>1/0/1</td>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Final Project</td>
<td>BMEGEXX4SD</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td>0/10/0</td>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Optional subject:</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air-Conditioning (4 credits)</td>
<td>BMEGEÉPAG62</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>2/0/0</td>
<td></td>
<td></td>
<td></td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>Total credits:</td>
<td></td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Faculty of Mechanical Engineering offers additional and optional courses (30 credits - upgrade to 240) on BSc level to its students - who completed 210 credits - to take.

Optional subjects

<table>
<thead>
<tr>
<th>Subject</th>
<th>Code</th>
<th>Credits</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>Requisities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modeling of Processes and Equipment</td>
<td>BMEGÉEAC01</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>1/1/0</td>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Laboratory</td>
<td>BMEGÉEAG00</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>0/0/4</td>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Independent Study 2</td>
<td>BMEGEVGAP2</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>0/0/8</td>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Heating</td>
<td>BMEGÉEPAG61</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>3/1/0</td>
<td></td>
<td></td>
<td></td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>Manager Communication</td>
<td>BMEGT63A081</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>0/2/0</td>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Crosscultural Communication</td>
<td>BMEGT63A091</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>0/2/0</td>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>English for Engineers</td>
<td>BMEGT63A051</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>0/4/0</td>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Analytical Mechanics</td>
<td>BMEGEMMWM01</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>3/0/0</td>
<td></td>
<td></td>
<td></td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>Advanced Fluid Mechanics</td>
<td>BMEGATMW01</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>3/0/0</td>
<td></td>
<td></td>
<td></td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>Advanced Thermodynamics</td>
<td>BMEGEENMWAT</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>2/1/0</td>
<td></td>
<td></td>
<td></td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>Power Electronics</td>
<td>BMEVIAU017</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>2/1/1</td>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td></td>
</tr>
<tr>
<td>Motion Control</td>
<td>BMEVIAU016</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>2/0/1</td>
<td></td>
<td></td>
<td></td>
<td>p</td>
<td></td>
</tr>
</tbody>
</table>

XX in the Final Project code varies from department to department e - exam, p - practical mark, ge - global exam
Curriculum of MSc Subjects

Mechanical Engineering Modeling - Fluid Mechanics module

<table>
<thead>
<tr>
<th>Subject</th>
<th>lecture/seminar/laboratory/requisite/credit</th>
<th>Beginning: spring</th>
<th>Beginning: fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic knowledge in natural sciences</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential Equations and Numerical Methods BMETE90MX46</td>
<td>4/2/0/e/8</td>
<td></td>
<td>4/2/0/e/8</td>
</tr>
<tr>
<td>Advanced Fluid Mechanics BMEGEÂTMW01</td>
<td>3/0/0/e/4</td>
<td></td>
<td>3/0/0/e/4</td>
</tr>
<tr>
<td>Advanced Thermodynamics BMEGEENNWMAT</td>
<td>2/1/0/e/4</td>
<td></td>
<td>2/1/0/e/4</td>
</tr>
<tr>
<td>Analytical Mechanics BMEGEÂMMWMW01</td>
<td>3/0/0/e/4</td>
<td></td>
<td>3/0/0/e/4</td>
</tr>
<tr>
<td>Laser Physics BMETE12MX00</td>
<td>3/1/0/e/4</td>
<td></td>
<td>3/1/0/e/4</td>
</tr>
<tr>
<td>Electronics BMEVIALUM001</td>
<td>2/0/1/e/4</td>
<td></td>
<td>2/0/1/e/4</td>
</tr>
<tr>
<td>Advanced Control and Informatics BMEGEÂMMWMW01</td>
<td>2/1/0/e/4</td>
<td></td>
<td>2/1/0/e/4</td>
</tr>
</tbody>
</table>

Primary subjects			
Machine Design and Production Technology BMEGEÂMMWMW01	2/1/0/e/4		2/1/0/e/4
Computational Fluid Dynamics BMEGEÂTMW02	2/2/0/p/5		2/2/0/p/5
Flow Measurements BMEGEÂTMW03	2/1/1/p/5		2/1/1/p/5
Teamwork Project BMEGEÂTMWTP	0/0/3/p/3		0/0/3/p/3

Diploma			
Final Project A BMEGEÂTMWDA	0/13/0/p/15	0/13/0/p/15	
Final Project B BMEGEÂTMWDB	0/13/0/p/15	0/13/0/p/15	

Economics and human subjects			
Management BMEGT20MW02	3/0/0/p/5		3/0/0/p/5
Marketing BMEGT20MW01	3/0/0/p/5		3/0/0/p/5

Differentiated professional subjects			
Minor Compulsory Subject I.	2/1/1/p/5	2/1/1/p/5	
Minor Compulsory Subject II.	2/1/1/p/5	2/1/1/p/5	
Minor Elective Subject I.	2/0/1/e/3	2/0/1/e/3	
Minor Elective Subject II.	2/1/0/e/3	2/1/0/e/3	
Major Compulsory Subject I.	1/1/0/e/3	1/1/0/e/3	
Major Compulsory Subject II.	2/1/0/e/3	2/1/0/e/3	
Major Elective Subject III.	2/0/1/p/3	2/0/1/p/3	

Elective subjects			
Further Elective Subject 1	2/0/0/p/3	2/0/0/p/3	
Further Elective Subject 2	2/0/0/p/3	2/0/0/p/3	

Major Elective Subjects & Further Elective Subjects

- Biologically Inspired Systems BMEGEÂMMGMB 2/0/0/p/3
- Large-Eddy Simulation in M.E. BMEGEÂTMW05 1/1/0/p/3 spring
- Multiphase and Reactive Flow Modeling BMEGEÂTMW17 2/0/0/p/3 fall
- Building Aerodynamics BMEGEÂTMW08 2/0/1/p/3 fall
- Aerodynamics and its Application for Vehicles BMEGEÂTMW19 1/0/1/p/3 fall
- Advanced Technical Acoustics and Measurement Techniques BMEGEÂTMW10 2/0/0/p/3 fall
- Open Source Computational Fluid Dynamics BMEGEÂTMW11 1/1/0/p/3 spring
- Unsteady Flows in Pipe Networks BMEGEVGMW02 2/0/0/p/3 spring
- Hemodynamics BMEGEVGMW06 2/0/0/p/3 spring
- Flow Stability BMEGEVGMW07 2/0/0/p/3 fall
- Theoretical Acoustics BMEGEVGMW08 2/0/0/p/3 spring

The subjects for the final exam need to be chosen exclusively from the major module subjects (totaling 16 cr).

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Block</th>
<th>Subject group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computational Fluid Dynamics BMEGEÂTMW02</td>
<td>Major Compulsory</td>
<td>Major Compulsory Subject I. (5cr)</td>
</tr>
<tr>
<td>Flow Measurements BMEGEÂTMW03</td>
<td>Major Compulsory</td>
<td>Major Compulsory Subject II. (5cr)</td>
</tr>
<tr>
<td>select one subject from table of major elective & further elective subjects</td>
<td>Major Elective</td>
<td>Major Elective Subject I. (3cr)</td>
</tr>
<tr>
<td></td>
<td>Major Elective</td>
<td>Major Elective Subject II. (3cr)</td>
</tr>
</tbody>
</table>
Curriculum of MSc Subjects

Mechanical Engineering Modeling - Solid Mechanics module

<table>
<thead>
<tr>
<th>Subject</th>
<th>Code/Subject group</th>
<th>beginning: spring</th>
<th>beginning: fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic knowledge in natural sciences</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential Equations and Numerical Methods</td>
<td>BMETE90MX46</td>
<td>4/2/0/e/0</td>
<td>4/2/0/e/8</td>
</tr>
<tr>
<td>Advanced Fluid Mechanics</td>
<td>BMGEATMW01</td>
<td>3/0/0/e/4</td>
<td>3/0/0/e/4</td>
</tr>
<tr>
<td>Advanced Thermodynamics</td>
<td>BMGEENMWAT</td>
<td>2/1/0/e/4</td>
<td>2/1/0/e/4</td>
</tr>
<tr>
<td>Analytical Mechanics</td>
<td>BMGEMMWM01</td>
<td>3/0/0/e/4</td>
<td>3/0/0/e/4</td>
</tr>
<tr>
<td>Laser Physics</td>
<td>BMET12MX00</td>
<td>3/1/0/e/4</td>
<td>3/1/0/e/4</td>
</tr>
<tr>
<td>Electronics</td>
<td>BMVIAUM001</td>
<td>2/0/1/e/4</td>
<td>2/0/1/e/4</td>
</tr>
<tr>
<td>Advanced Control and Informatics</td>
<td>BMGEMIMW01</td>
<td>2/1/0/e/4</td>
<td>2/1/0/e/4</td>
</tr>
<tr>
<td>Primary subjects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machine Design and Production Technology</td>
<td>BMGEWEGMW01</td>
<td>2/1/0/e/4</td>
<td>2/1/0/e/4</td>
</tr>
<tr>
<td>Finite Element Analysis</td>
<td>BMGEWEMMW02</td>
<td>2/2/0/p/5</td>
<td>2/2/0/p/5</td>
</tr>
<tr>
<td>Continuum Mechanics</td>
<td>BMGEWEMMW03</td>
<td>2/1/0/p/5</td>
<td>2/1/0/p/5</td>
</tr>
<tr>
<td>Teamwork Project</td>
<td>BMGEMMWMWP1</td>
<td>0/0/3/p/3</td>
<td>0/0/3/p/3</td>
</tr>
<tr>
<td>Diploma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Project A</td>
<td>BMGEMMWMWDA</td>
<td>0/13/0/p/15</td>
<td>0/13/0/p/15</td>
</tr>
<tr>
<td>Final Project B</td>
<td>BMGEMMWMWDB</td>
<td>0/13/0/p/15</td>
<td>0/13/0/p/15</td>
</tr>
<tr>
<td>Economics and human subjects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management</td>
<td>BMGET20MW02</td>
<td>3/0/0/p/5</td>
<td>3/0/0/p/5</td>
</tr>
<tr>
<td>Marketing</td>
<td>BMGET20MW01</td>
<td>3/0/0/p/5</td>
<td>3/0/0/p/5</td>
</tr>
<tr>
<td>Differentiated professional subjects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minor Compulsory Subject I.</td>
<td>BMGEMMMW01</td>
<td>2/1/1/p/5</td>
<td>2/1/1/p/5</td>
</tr>
<tr>
<td>Minor Compulsory Subject II.</td>
<td>BMGEMMMW02</td>
<td>2/1/1/p/5</td>
<td>2/1/1/p/5</td>
</tr>
<tr>
<td>Minor Elective Subject I.</td>
<td>BMGEMMMW03</td>
<td>2/1/0/p/3</td>
<td>2/1/0/p/3</td>
</tr>
<tr>
<td>Minor Elective Subject II.</td>
<td>BMGEMMMW04</td>
<td>2/1/0/p/3</td>
<td>2/1/0/p/3</td>
</tr>
<tr>
<td>Major Elective Subject I.</td>
<td>BMGEMMMW05</td>
<td>1/1/0/p/3</td>
<td>1/1/0/p/3</td>
</tr>
<tr>
<td>Major Elective Subject II.</td>
<td>BMGEMMMW06</td>
<td>2/1/0/p/3</td>
<td>2/1/0/p/3</td>
</tr>
<tr>
<td>Major Elective Subject III.</td>
<td>BMGEMMMW07</td>
<td>2/0/1/p/3</td>
<td>2/0/1/p/3</td>
</tr>
<tr>
<td>Elective subjects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Further Elective Subject 1.</td>
<td>BMGEMMMW08</td>
<td>2/0/0/p/3</td>
<td>2/0/0/p/3</td>
</tr>
<tr>
<td>Further Elective Subject 2.</td>
<td>BMGEMMMW09</td>
<td>2/0/0/p/3</td>
<td>2/0/0/p/3</td>
</tr>
<tr>
<td>Major Elective Subjects & Further Elective Subjects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biologically Inspired Systems</td>
<td>BMGEMIMGBI</td>
<td>2/0/0/p/3</td>
<td></td>
</tr>
<tr>
<td>Elasticity and Plasticity</td>
<td>BMGEMMMW05</td>
<td>1/1/0/p/3</td>
<td>spring</td>
</tr>
<tr>
<td>Nonlinear Vibrations</td>
<td>BMGEMMMW06</td>
<td>1/1/0/e/3</td>
<td>spring</td>
</tr>
<tr>
<td>Coupled Problems in Mechanics</td>
<td>BMGEMMMW07</td>
<td>1/0/1/e/3</td>
<td>spring</td>
</tr>
<tr>
<td>Mechanics</td>
<td>BMGEMMMW08</td>
<td>1/3/0/p/3</td>
<td>fall</td>
</tr>
<tr>
<td>Beam Structures</td>
<td>BMGEMMMW09</td>
<td>1/3/0/e/3</td>
<td>fall</td>
</tr>
<tr>
<td>Experimental Methods in Solid Mechanics</td>
<td>BMGEMMMW10</td>
<td>1/0/1/p/3</td>
<td>fall</td>
</tr>
</tbody>
</table>

The subjects for the final exam need to be chosen exclusively from the major module subjects (totaling 16 cr)

Subjects Block Subject group

- **Finite Element Analysis**: BMGEMMWMW02 Major Compulsory
- **Continuum Mechanics**: BMGEMMWMW03 Major Compulsory
- Select one subject from table of major elective & further elective subjects
- Major Elective
- Major Elective Subject I. (3 cr)
- Major Elective Subject II. (3 cr)
Curriculum of MSc Subjects
Mechanical Engineering Modeling - Thermal Engineering module

<table>
<thead>
<tr>
<th>Subject Block</th>
<th>Subject group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic knowledge in natural sciences</td>
<td></td>
</tr>
<tr>
<td>Differential Equations and Numerical Methods</td>
<td>BMETE90MX46 4/2/0/e/8 4/2/0/e/8</td>
</tr>
<tr>
<td>Advanced Fluid Mechanics</td>
<td>BMEGEÁTMW01 3/0/0/e/4 3/0/0/e/4</td>
</tr>
<tr>
<td>Advanced Thermodynamics</td>
<td>BMEGEENNMWAT 2/1/0/e/4 2/1/0/e/4</td>
</tr>
<tr>
<td>Analytical Mechanics</td>
<td>BMEGEENMMW01 3/0/0/e/4 3/0/0/e/4</td>
</tr>
<tr>
<td>Laser Physics</td>
<td>BMETE12MX00 3/1/0/e/4 3/1/0/e/4</td>
</tr>
<tr>
<td>Electronics</td>
<td>BMEVIALUM001 2/3/1/e/4 2/3/1/e/4</td>
</tr>
<tr>
<td>Advanced Control and Informatics</td>
<td>BMEGEMIMW01 2/1/0/e/4 2/1/0/e/4</td>
</tr>
<tr>
<td>Primary subjects</td>
<td></td>
</tr>
<tr>
<td>Machine Design and Production Technology</td>
<td>BMEGEEMW01 2/1/0/e/4 2/1/0/e/4</td>
</tr>
<tr>
<td>Combustion Technology</td>
<td>BMEGEENMWCT 2/1/1/p/5 2/1/1/p/5</td>
</tr>
<tr>
<td>Energy Conversion Processes and its Equipment</td>
<td>BMEGEENMWP 2/1/0/p/5 2/1/0/p/5</td>
</tr>
<tr>
<td>Teamwork Project</td>
<td>BMEGEEMMPR 0/0/3/p/3 0/0/3/p/3</td>
</tr>
<tr>
<td>Diploma</td>
<td></td>
</tr>
<tr>
<td>Final Project A</td>
<td>BMEGEEMMWDA 0/13/0/p/15 0/13/0/p/15</td>
</tr>
<tr>
<td>Final Project B</td>
<td>BMEGEEMMWDB 0/13/0/p/15 0/13/0/p/15</td>
</tr>
<tr>
<td>Economics and human subjects</td>
<td></td>
</tr>
<tr>
<td>Management</td>
<td>BMEGT20MW02 3/0/0/p/5 3/0/0/p/5</td>
</tr>
<tr>
<td>Marketing</td>
<td>BMGT20MW01 3/0/0/p/5 3/0/0/p/5</td>
</tr>
<tr>
<td>Differentiated professional subjects</td>
<td></td>
</tr>
<tr>
<td>Minor Compulsory Subject I.</td>
<td>2/1/1/p/5 2/1/1/p/5</td>
</tr>
<tr>
<td>Minor Compulsory Subject II.</td>
<td>2/1/1/p/5 2/1/1/p/5</td>
</tr>
<tr>
<td>Minor Elective Subject I.</td>
<td>2/0/1/p/3 2/0/1/p/3</td>
</tr>
<tr>
<td>Minor Elective Subject II.</td>
<td>2/1/0/p/3 2/1/0/p/3</td>
</tr>
<tr>
<td>Major Elective Subject I.</td>
<td>1/1/0/p/3 1/1/0/p/3</td>
</tr>
<tr>
<td>Major Elective Subject II.</td>
<td>2/0/1/p/3 2/0/1/p/3</td>
</tr>
<tr>
<td>Major Elective Subject III.</td>
<td>2/0/1/p/3 2/0/1/p/3</td>
</tr>
<tr>
<td>Elective subjects</td>
<td></td>
</tr>
<tr>
<td>Further Elective Subject 1.</td>
<td>2/0/0/p/3 2/0/0/p/3</td>
</tr>
<tr>
<td>Further Elective Subject 2.</td>
<td>2/0/0/p/3 2/0/0/p/3</td>
</tr>
<tr>
<td>Major Elective Subjects & Further Elective Subjects</td>
<td></td>
</tr>
<tr>
<td>Biologically Inspired Systems</td>
<td>BMEGEMMGBI 2/0/0/p/3</td>
</tr>
<tr>
<td>Simulation of Energy Engineering Systems</td>
<td>BMEGEENMWSE 1/0/2/p/3 spring</td>
</tr>
<tr>
<td>Thermal Physics</td>
<td>BMEGEENMWTP 2/0/1/p/3 spring</td>
</tr>
<tr>
<td>Thermo-Mechanics</td>
<td>BMEGEMMMWTM1/0/1/p/3 fall</td>
</tr>
<tr>
<td>Steam and Gas Turbines</td>
<td>BMEGEENMWSTU 2/0/1/p/3 fall</td>
</tr>
<tr>
<td>Measurements in Thermal Engineering</td>
<td>BMEGEENMWMT 1/0/3/p/4 spring</td>
</tr>
</tbody>
</table>

The subjects for the final exam need to be chosen exclusively from the major module subjects (totaling 16 cr)

Subjects Block Subject group

- **Combustion Technology** Major Compulsory Major Compulsory Subject I. (5cr)
- **Energy Conversion Processes and its Equipment** Major Compulsory Major Compulsory Subject II. (5cr)
- select one subject from table of major elective & further elective subjects Major Elective Major Elective Subject I. (3cr)
- Major Elective Major Elective Subject II. (3cr)

* e - exam, p - practical mark, ge - global exam
Curriculum of MSc Subjects

Mechanical Engineering Modeling - Design and Technology module

<table>
<thead>
<tr>
<th>Subject</th>
<th>Name</th>
<th>Code</th>
<th>lecture/seminar/laboratory/requisite/credit</th>
<th>Beginning: spring</th>
<th>Beginning: fall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 Spring</td>
<td>2 Fall</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 Spring</td>
<td>4 Fall</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 Fall</td>
<td>1 Spring</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 Fall</td>
<td>3 Spring</td>
</tr>
<tr>
<td>Basic knowledge in natural sciences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Differential Equations and Numerical Methods</td>
<td>BMETE90MX46</td>
<td>4/2/0/e/0</td>
<td>4/2/0/e/8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Advanced Fluid Mechanics</td>
<td>BMGEATMW01</td>
<td>3/0/0/e/4</td>
<td>3/0/0/e/4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Advanced Thermodynamics</td>
<td>BMGEENMWAT</td>
<td>2/1/0/e/4</td>
<td>2/1/0/e/4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Analytical Mechanics</td>
<td>BMEGEMMMW01</td>
<td>3/0/0/e/4</td>
<td>3/0/0/e/4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Laser Physics</td>
<td>BMETE12MX00</td>
<td>3/1/0/e/4</td>
<td>3/1/0/e/4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electronics</td>
<td>BMETEIAUM001</td>
<td>2/0/1/e/4</td>
<td>2/0/1/e/4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Advanced Control and Informatics</td>
<td>BMEGEMIMW01</td>
<td>2/1/0/e/4</td>
<td>2/1/0/e/4</td>
<td></td>
</tr>
<tr>
<td>Primary subjects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Machine Design and Production Technology</td>
<td>BMEGEGEMW01</td>
<td>2/1/0/e/4</td>
<td>2/1/0/e/4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Product Modeling</td>
<td>BMGEATMW02</td>
<td>2/0/1/p/5</td>
<td>2/0/1/p/5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Advanced Manufacturing</td>
<td>BMGEATGMW01</td>
<td>1/0/3/p/5</td>
<td>1/0/3/p/5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Teamwork Project</td>
<td>BMGEATMWP1</td>
<td>0/0/3/p/3</td>
<td>0/0/3/p/3</td>
<td></td>
</tr>
<tr>
<td>Diploma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Final Project A</td>
<td>BMGEATMWDA</td>
<td>0/13/0/p/15</td>
<td>0/13/0/p/15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Final Project B</td>
<td>BMGEATMWDB</td>
<td>0/13/0/p/15</td>
<td>0/13/0/p/15</td>
<td></td>
</tr>
<tr>
<td>Economics and human subjects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Management</td>
<td>BMGEATMW02</td>
<td>3/0/0/p/5</td>
<td>3/0/0/p/5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Marketing</td>
<td>BMGEATMW01</td>
<td>3/0/0/p/5</td>
<td>3/0/0/p/5</td>
<td></td>
</tr>
<tr>
<td>Differentiated professional subjects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minor Compulsory Subject I.</td>
<td>2/1/1/p/5</td>
<td>2/1/1/p/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minor Compulsory Subject II.</td>
<td>2/1/1/p/5</td>
<td>2/1/1/p/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minor Elective Subject I.</td>
<td>2/0/1/p/3</td>
<td>2/0/1/p/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minor Elective Subject II.</td>
<td>2/1/0/p/3</td>
<td>2/1/0/p/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Major Elective Subject I.</td>
<td>1/1/0/p/3</td>
<td>1/1/0/p/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Major Elective Subject II.</td>
<td>2/1/0/p/3</td>
<td>2/1/0/p/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Major Elective Subject III.</td>
<td>2/0/1/p/3</td>
<td>2/0/1/p/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective subjects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Further Elective Subject 1.</td>
<td>2/0/0/p/3</td>
<td>2/0/0/p/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Further Elective Subject 2.</td>
<td>2/0/0/p/3</td>
<td>2/0/0/p/3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Major Elective Subjects & Further Elective Subjects

<table>
<thead>
<tr>
<th>Subject</th>
<th>Name</th>
<th>Code</th>
<th></th>
<th>Block</th>
<th>Subject group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Biologically Inspired Systems</td>
<td>BMGEATMIMGBI</td>
<td>2/0/0/p/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAD Technology</td>
<td>BMGEATMW04</td>
<td>1/0/2/e/4</td>
<td>spring</td>
<td>Major Compulsory Subject I. (5cr)</td>
</tr>
<tr>
<td></td>
<td>Materials Science</td>
<td>BMGEATMMW01</td>
<td>2/0/0/e/3</td>
<td>spring</td>
<td>Major Compulsory Subject II. (5cr)</td>
</tr>
<tr>
<td></td>
<td>Structural Analysis</td>
<td>BMGEATMW05</td>
<td>1/0/2/p/4</td>
<td>spring</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Process Planning</td>
<td>BMGEATGMW02</td>
<td>1/1/0/p/3</td>
<td>fall</td>
<td>Major Elective Subject I. (3cr)</td>
</tr>
<tr>
<td></td>
<td>NC Machine Tools</td>
<td>BMGEATMWM03</td>
<td>1/1/0/p/3</td>
<td>fall</td>
<td>Major Elective Subject II. (3cr)</td>
</tr>
</tbody>
</table>

The subjects for the final exam need to be chosen exclusively from the major module subjects (totaling 16 cr)

Subjects

- Product Modeling
- Advanced Manufacturing

Block

- Major Compulsory
- Major Elective

Subject group

- Major Compulsory Subject I. (5cr)
- Major Compulsory Subject II. (5cr)
- Major Elective Subject I. (3cr)
- Major Elective Subject II. (3cr)
Description of BSc Subjects

Compulsory English I and II.
- **BMETG63A301, BMETG63A302**
 The courses are designed to enable students to communicate fluently and effectively in study environment. Receptive, productive and interactive activities and strategies are included in the curricula. By the end of the 2nd semester the overall language ability of the students is on level B2 (by the Common European Framework of Reference). 4 hours/2 credits.

Descriptive Geometry
- **BMET90AX06**

Introduction to Mechanical Engineering
- **BMEGEYGAG01**

Information Systems
- **BMEGERIA311**

Macro- and Microeconomics
- **BMETG30A001**

Mathematics A1a - Calculus
- **BMETE90AX00**

Technical Chemistry
- **BMVEKTEAGE1**

Statics
- **BMEGEMMAGM1**

Materials Science and Testing
- **BMEGEMTAGK1**

Fundamentals of CAD
- **BMEGEGEA3CD**

Physics A2
- **BMETE15AX02**
 Properties of electric charges. Insulators and conductors. Coulomb’s law. The electric field. Superposition. Electric field lines of forces. The electric flux. Gauss’s law. Examples: the electric field of some specific charge distribu-

Fundamentals of Machine Design
BMEGEAGM1

Mathematics A2a - Vector Functions
BMETE90AX02

Software Engineering
BMEGERIA32P

Strength of Materials
BMEGEMMAGM2

Dynamics
BMEGEMMAGM3

Materials Engineering
BMEGEMTAGK2

Physics A3
BMETE15AX03

Machine Elements 1
BMEGEAGG1
of shafts and rotors for static combined loads. Fatigue and life of members. Dimensioning on strength at harmonically varying loads. 4 hours/5 credits.

Environmental Management Systems

The course covers the topics relevant to the protection of environmental compartments, environmental pressures and pollution in a global context. Introduces the concepts, indicators and tools of environmental protection (air, water, noise and soil protection and waste management. Environmental management systems (EMS) at enterprises and other organizations. EMS topics include the assessment of environmental aspects and impacts, environmental audit, reporting, environmental performance evaluation, life cycle assessment and related international standards. 3 hours/3 credits.

Mathematics A3 for Mechanical Engineers

Analysis of Technical and Economical Data

Measurement Technology

The measurement of geometric quantities of mechanical engineering. Statistical analysis and data acquisition of the measured values. Systematization of errors, according to their origin, character and form. Measurement methods. Electronic measurement of typical time-dependent non-electric quantities of mechanical engineering and of mechatronics. Structure of the measurement chain, sensor and transducer types, the role of intermediate quantities. Dynamical errors, frequency transfer characteristics. Classification and Fourier analysis of signals. Digital measurement systems for length and angle. Basics of digital measurement of signals, digitization methods and sampling theorem. 3 hours/3 credits.

Basics of Electrical Engineering

Basics of stationary and time-varying electric and magnetic fields and their engineering applications. DC and single-phase AC circuit with lumped parameters. Complex quantities, and phasor diagram. Active, reactive and apparent powers. Modeling electromechanical systems. Basic electrical instruments and measurements. 3 hours/3 credits.

Machine Elements 2

BMEGE GAG2
BMEGE GAG2

Manufacturing

The basic model of the machining system (WFMTC system), introduction to the part modeling, to the fixturing the parts, to the machine tools and robotics, to the cutting tools and to the controlling of the machine tools. Mechanics of cutting, geometry of the cutting edge, chip breaking, stability of cutting. Tool wear and tool life. Tool materials and cutting fluids. Fundamentals of the measuring techniques and quality control. The main measuring devices. Fundamentals of metal cutting machine tools kinematics. Manually operated, cam controlled and computer controlled machine tools. Basic types of machine tools. Flexible manufacturing cells and systems. Manufacturing process planning. Computer-Aided Manufacturing. 5 hours/5 credits.

Fluid Mechanics

BMEGE AAG1

Engineering Thermodynamics

BMEGE AETD

Polymer Materials Science and Engineering

BMGEPTAGOP

Vibrations

BMGEEMMAGM4

Electromechanics

BMDEVIAUA008

Control Engineering

BMGEAGMAGI

Heat Transfer

BMGEAGMAGH

Diffusion Processes

BMGEVEAGO2

Measurement at Energy and Environmental Protection

BMGEENAGG1

The role of measurements in maintaining and controlling the energy conversion processes. Hardware and software tools of the control and measurement systems. Laboratory tests of different engines and equipments. Simultaneous determination of system variables (flow rates, pressures, temperatures, etc.). Methods of determination of performance, efficiency, exhaust gas composition. 3 hours/3 credits.

Measurement Technique of Processes

BMGEVGAGO3

Fundamentals of FEM

BMGEVMAGG5

Management and Business Economics

This course introduces the essentials of management as they apply within the contemporary work environment and gives a conceptual understanding of the role of management in the decision making process. Particular attention is paid to management theories, corporate finance, leadership, teamwork, quality management, management of technology, economics calculation and operations management. For problem formulation both the managerial interpretation and the mathematical techniques are applied. 4 hours/4 credits.

Business Law

The problems of the area will be treated in two major parts. Part One introduces students to the general topics, for example the concept of law, the functions of law in the socioeconomic life. Some basic legal problems, like the conception, characteristics and functions of the modern state and, in a comparative view, the characteristics of the Anglo-Saxon and continental systems of business law and the development of the Hungarian business law will be also discussed. The emphasis of Part Two is on the questions of company law and competition law presented in a European context. The lectures of this part outline not only the regulations of the Hungarian Company Act and Company Registry Act but they cover EU directives and regulations on companies and competition as well. 2 hours/2 credits.

Marketing

Communication Skills - English

It is designed to meet the language needs of students in academic and professional fields. Special emphasis is on the language of meetings and discussions, oral presentation and summary writing. 2 hours/2 credits.

Technical Acoustics and Noise Control

Fluid Machinery

Euler equation, specific work, head, performance characteristics of axial and centrifugal machines. Losses, efficiencies. Non-dimensional parameters, scaling laws, specific speed. Cavitation, NPSH. Operation (parallel, serial) and control of turbomachines. Thrust loads (axial, radial). Axial fan, axial compressor stage. 4 hours/4 credits.

Heat Engines

Numerical Simulation of Fluid Flows

Processes and Equipment of Chemical Industry

Air Pollution, Wastewater and Solid Wastes Management

Gaseous and particulate air pollutants. Source control of emissions. Waste gas treatment techniques for volatile organic compounds and inorganic compounds, for gaseous pollutants in combustion exhaust gases and for particulate matter. Wastewater characteristics, pre-treatment. Primary
separation or clarification wastewater treatment techniques. Physical, chemical, and water treatment techniques. Biological treatment techniques for biodegradable waste water. Wastewater sludge treatment techniques, sludge disposal. Types, sources, properties, quantities, and qualities of solid wastes. On-site handling, storage and processing of solid wastes. Collection, transfer and transport of solid wastes. Solid wastes processing techniques. Biological, chemical and energetic resource recovery processes. Ultimate disposal. 3 hours/3 credits.

Independent Study 1

BMEGEVGAG06
One-semester long individual project work. 4 hours/4 credits.

Heating

BMEGEÉPAG61

Manager Communication

BMEGT63A081
It is designed to establish and update basic language skills, and competences required by acting in management fields. 2 hours/2 credits

Crosscultural Communication

BMEGT63A091
It is designed to make students aware of cultural differences, develop their intercultural competencies. Special emphasis is on verbal and non-verbal communication, language diversity, and socio-cultural factors. 2 hours/2 credits.

Fluid Flow Systems

BMEGEVGAG07
Operation of pumps and fans in systems. Selection of the proper turbomachine considering safety, cavitation free operation and efficiency of controlling the turbomachine. Stability of operation of fans and compressors in systems containing large air volumes - an investigation based on a simple linear theory of stability. Computation of the flow rate and pressure distribution in looped pipe networks. Flow in open channels. Optimisation of the operation of water distribution systems containing pumps and reservoirs for minimum electricity cost. Basics of hydraulic transients. 3 hours/3 credits.

Energy Processes and Equipments

BMEGEENAGG71

Volumetric Pumps and Compressors

BMEGEVGAG04

Measurement for Chemical and Environmental Processes

BMEGEVEAG04
Introduction to instrumentation and measurement systems. Process instrumentation, measurement methods, instruments and techniques of various physical quantities. Online measurement with modular multi-parameter measuring system. Laboratory exercises for monitoring of waste water and air pollutants. Receive practical hands on experience in the laboratory using dryer, filter and heater equipment. 3 hours/3 credits.

Final Project

BMEGEXX45D
One-semester long individual project work. 10 hours/15 credits. *XX in the code varies from department to department.

Air-Conditioning

BMEGEÉPAG62
Basis for ventilation, thermal comfort and indoor air quality. Heating and cooling load calculations. Calculation of supply airflow rate for ventilated rooms, pollution and energy balance. Layout of air conditioning systems. Air movement in rooms, air distribution systems. Elements and processes of air handling systems. Filtration of air, filters. Treatments of air, equipment of heating, cooling, heat recovery and humidification. Hydraulic sizing of airduct system. Psychrometric charts. Process and flow diagrams of several air conditioning systems. 4 hours/4 credits Additional and optional courses on BSc level Pre-requisites: BSc final exam (diploma)

Optional Subjects (upgrade to ECTS 240)

Modeling of Processes and Equipment

BMEGEÉEAG01
Generalized two- and three-phase stage model. Types of equations describing the operation of equipment. Number of degrees of freedom. Design and modeling algorithms. Vapor-liquid and liquid-liquid equilibrium calculations. Simulation of countercurrent separation processes (distillation, absorption, stripping, extraction, extractive distillation) with a professional flow sheet simulator. 2 hours/3 credits.

Laboratory

BMEGEÉEAG00
Heat and material balance in spray drier. Overall heat transfer coefficient in tubular heat exchangers. Adsorption of gases (Breakthrough curve). Absorption in packed columns (Mass transfer coefficient, number of transfer units). Air vol-
ume flow rate measurement in an air technology system. The measurement of pressure relations of a ventilator on a Bernoulli bench. Thermal comfort related laboratory measurements. Measurement of combustion parameters and efficiency of gas boilers. 4 hours/5 credits.

Independent Study 2

BMEGEVGAIP2

One-semester long individual project work. 8 hours/8 credits

Heating

BMEGEEPA61

Manager Communication

BMEGT63A081

It is designed to establish and update basic language skills, and competences required by acting in management fields. 2 hours/2 credits

Crosscultural Communication

BMEGT63A091

It is designed to make students aware of cultural differences, develop their intercultural competencies. Special emphasis is on verbal and non-verbal communication, language diversity, and socio-cultural factors. 2 hours/2 credits.

English for Engineers

BMEGEMMMW01

It is designed to meet the language needs of students in academic and professional fields. Special emphasis is on understanding complex technical texts, as well as producing clear paragraphs and essays on certain technical topics. 2 hours/2 credits.

Analytical Mechanics

BMEGEMMW01

Advanced Fluid Mechanics

BMEGEATMW01

Advanced Thermodynamics

BMEGEMMWAT

Motion Control

BMEVIAUA016

Power Electronics

BMEVIAUA017

Semiconductor devices, the basic power electronics (PE) circuits and their application to such an extent that makes the students capable of understanding the principle of operation of PE equipment, carry out their laboratory tests, diagnosing faults and solving the task of selection as well as operation. Topics: 1. Introduction, Definition of PE; 2. Applications of Power Electronics; 3. DC/DC Converters; 4. Characteristics of Semiconductor Switching Devices; 5. Diodes, Thyristors, Application of Thyristors; 6. Controllable Semiconductor Switches: BIT, MOSFET, IGBT, GTO, Emerging Devices; 7. Converters: Classification, Configurations, Properties; 8. Output Voltage Regulation Methods, Overview of PWM; 9. AC Voltage Controllers: On-Off Control, Phase Control, Applications; 10. DC motor types, DC motor drives, Fields of Application; 11. Characteristics of the DC

Engineering Design and Technology Specialization

The below courses make exclusive part of the Engineering Design and Technology Specialization.

Metal Forming

BMEGEMTAGE1

To present different processes in the field of cold, hot and sheet metal forming using the base-knowledge about material structure, mechanics and tribology taking into account the deformability of the material and other process parameters. Process design is based on the modeling of plastic deformation. Tools and equipments for the forming also are presented.

Base technologies and raw materials of cold forming processes: upsetting, heading, forward, backward and radial extrusion. Workability of materials. Die and process design of technology.

Laboratory: Flow curve and friction factor determination, testing of cold forming processes, design of die and forming technology, modeling of plastic forming. (4 credits)

Non-Destructive Testing of Materials

BMEGEMTAGE2

The subject gives an experience-oriented overview to the up-to-date non-destructive testing and evaluation (NDT and NDE) methods and technologies applied in mechanical-, electrical- and electronic industries. The subject deals with the basic and special non-destructive material testing methods, equipment and techniques of material defect analysis.

Lectures: Classification of NDT and NDE methods. Visualization, liquid penetration investigation of cracks. Ultrason-
Machine Design

BMEGEGEAGMD

CAD Systems

BMEGEGEAGCS

The course prepares the students to resolve complex task in the mechanical engineering with the tools of the computer aided design. Lecture topics: Introduction, using of the intelliFiles. Theory of the TOP-DOWN design. Integrated CAD systems. Virtual product development. Parametric design. Design of the mechanisms. Topics of the labs: Introduction, overview on the 3D part modeling. TOP-DOWN design in static constructions. Issuing homework No.1. Overview on 3D assembly modeling. Design of the cast parts. 3D model based technical drafting. SW test (45 min). (3 credits)

Project Work

BMEGEGEAGPW

The course is to introduce the behavior analysis of machine construction and the optimal design using the tools of geometrical modeling and analysis. During the semester a machine design project should be worked out in small groups according to the following schedule. The task involves the conceptual and detailed designing of a machine structure, building a 3D-geometrical model in a CAD-System and, furthermore, the solving of several analysis problems. The main steps and milestones of the project: Fixing the aim of the project. Project scheduling. Collecting information. Requirements. Developing and evaluating of design concepts. Simplified modeling and analytical calculation of the construction. Building the structural model (simplified geometry, load cases, boundary conditions and material properties). Presentation 1 (in team, max. 10 points). Working out the 3D-solid model of the evaluated design concept. Numerical modeling of the problem (static, dynamic, thermal, kinematic analysis). Evaluating and critic of the first model. Presentation 2 (in team or individually, min. 10, max. 20 points). Finalizing the construction. Preparing the project documentation and the assembly drawing. Presentation 3 (in team and individually, 20 minutes, max. 20 points). Submitting the project documentation and drawings (individually max. 50 points). (3 credits)

Manufacturing Processes

BMEGEGTAG91

Machine Tools and Manufacturing Systems

BMEGEGTAG92

The subject introduces structural elements, structural layout, and various types of the metal-cutting machine tools, their technological and operation characteristics, the basic concepts and layouts of manufacturing systems, and the most important material supply equipment needed to build up manufacturing systems. The lectures include the following topics. Fundamentals of the kinematics of machine tools and the NC technology. Classification of metal-cutting machine tools. Selection criteria of machine tools. Structural building blocks: friction, rolling and hydrostatic guideways; ball screws; linear motors; rack and pinion mechanisms; hydrostatic screws; indexing and NC rotary tables; rotary actuators; gears, warm wheel, torque motor. Spindles: belt drive, gear drive, direct drive, integrated spindle; rolling, hydrostatic, aerostatic bearings; tool holders and tool clamping; lathe and milling spindles. Lathes and turning centres. Milling machines and machining centres. Automatic tool and workpiece changing peripherals. Multi-functional machine tools. Parallel and hybrid kinematics machine tools. Methods and tools for design and simulation of machine tools. Types and various layouts of manufacturing systems. Material supply principles. Material supply equipment: conveyors, forklifts, AGVs, robots. Flexible manufacturing systems. Methods and tools for planning, design and simulation of manufacturing systems. (3 credits)
CAD/CAM Applications

BMEGETAG93

The aim of the subject is to introduce students into computer aided design and manufacturing systems via industry proven tasks, application examples. Out through laboratory works they can learn the main principles of computer aided manufacturing programming techniques, the characteristics, advantages and limits of recent CAD and CAM systems and up to date developments. The focus of the subject is to teach manufacturing oriented computer modeling (preprocessing), applications and programming (post-processing). Detailed thematic description of the subject: Product and production life cycle: Product, product workflow (lifecycle), production and manufacture, product design and production planning, modeling (models). Computer aided automation of process planning (engineering): manufacturing process planning and engineering models (CAM/CAE models); object and process oriented, integrated planning methods (CIM); manufacturing and manufacturability planning, CAD or/and CAM systems: principles of CAD and CAM system application, design for manufacture and assembly, feature based design and manufacturing process planning, manufacturing process oriented (generated) surface models and modeling, technology and quality controlled design and planning. CAM items and basic workflows: modeling of parts, assembly, environment (machine, device, tool, control, etc.) and technological process; CAD/CAM systems and elements (modules); CAM work- and data flows (interfaces, documents); manufacturing dimension; material, tool and technological databases; manufacturing strategies (roughing and finishing, path generation and combination, etc.); manufacturing levels and boundaries: 2.5-3D tasks, cycles, options, >3D manufacturing via CAM systems: manufacturing planning on lathes, mills and wire EDMs, spatial motion strategies, manufacturing sculptured and composed (combined) surfaces, applications of combined strategies, high speed machining (HSM) and special techniques. CAM/CNC interfaces, postprocessors: adaptation and transportation interface drivers (engine, processor), surfaces (HW/SW) and languages (formats), intermediate surfaces, languages, ISO CLDATA, ISO standard and advanced NC program languages, post processing (postprocessors and postprocessor generator), DME connections (DMIS) and NC auxiliary functions (in process measure, adaptive feed and/or path optimization, etc.). Surveying knowledge: lecture’s and supplementary labor’s test.

Thematic of laboratories: Subject requirements and thematic, 2.5D multiple hollow part modeling, NASA CAD test laboratory, Test1 (CAD labor work), surface and solid modeling of complex surfaces and combined, assembled block, NASA CAM test milling, 2.5D milling of hollow part in EdgeCAM, 3D-s CAM modeling and manufacturing programming, Test2 (CAM labor work), Homework consulting, check and submission. (3 credits)

Composites Technology

BMEGETAG1

Getting familiar with the matrices and reinforcing materials of polymer composites. Gaining knowledge about the manufacturing technologies of thermoplastic and thermoset matrix composites. Learning the basics of composite mechanisms and composite specific design guidelines.

Laboratory practice topics: Tensile and flexural testing of the specimens. Test data evaluation. Calculating the expected mechanical properties of the specimen types, comparison with the test data, summarizing the results for the required technical report. (4 credits)

Injection Molding

BMEGETAG2

Polymer Processing

BMEGETAG3

Description of MSc Subjects

Mechanical Engineering Modeling

Basic Subjects for each module

Differential Equations and Numerical Methods
BMETE90MX46

Laser Physics
BMETE12MX00

Analytical Mechanics
BMEGE9MMMW01

Advanced Thermodynamics
BMGE9EANMWAT

Electronics
BMVIAU9MM001

Advanced Control and Informatics
BMGE9EANMW01
Fluid Mechanics module

Primary Subjects

Machine Design and Production Technology

BMEGEGEMW01

The goal of the course is to give a theoretical overview on the fields of machine design and production technology, according to the detailed topics below. Some elements of the methodology is covered on the seminars throughout a semester project. Machine design: Design principles and methods. Requirements. Modern design techniques. Structural behavior and modeling. Design of frame structures. Polymer and composite components. Load transfer between engineering components. Structural optimization (object function, design variables, constraints, shape and size optimization). Production: Machine-tools and equipment, devices and fixtures, kinematics, machining principles, production procedures and processes, production volume, batches and series. Manufacturability and tooling criteria, preliminary conditions and production analysis, methods of sequencing operations, production planning and scheduling. Production management (TQC and JIT), automated production; cellular manufacturing, machining centers and robots. Product data and technical document management (PDM, TDM), engineering changes and production workflow management (CE, ECM).

Computational Fluid Dynamics

BMEGÉATMW02

Flow Measurements

BMEGÉATMW03

Teamwork Project

BMEGÉATMWTP

Experimental and/or numerical (CFD) teamwork project proposals will be announced by the supervisors on the registration week or before for group of 2-3 students. The Teamwork Project proposals are defined as being complex problems for the 1st or 2nd semester, and can also be continued partly by a single student in course of the Final Project A or B (BMEGÉATMWDA or BMEGÉATMWDB) in the 3rd and 4th semester, hence resulting in a fully complex MSc Thesis of the student at the end of the curriculum. A so-called Evaluation Team (ET) is formed in that the group’s supervisor + two advisors are participating, being the members of ET.

Final Project A

BMEGÉATMWDA

The aim of the course is to develop and enhance the capability for complex problem solving of the students under advisory management of the so-called Evaluation Team. The student’s supervisor and two advisors form the Evaluation Team (ET).

Detailed thematic description of the subject: various experimental and/or numerical (CFD) project proposals are announced by the supervisors well before the registration week. The project proposals are defined as being complex problems both for the 3rd and further on the 4th semester, since they are to be continued in course of the Final Project B (BMEGÉATMWDB) in the 4th semester. The findings of the complex, two-semester long project will be summarised in the final Master (MSc) Thesis.

In course of the Final Project A and further on the Final Project B the student will work on one selected challenging problem of fluid mechanics.

1st ET meeting - 4th week: 1st project presentation by the student
2nd ET meeting - 8th week: 2nd project presentation by the student
3rd ET meeting - 14th week: 3rd project presentation by the student
15th week: submission of the major Project Report in printed and electronic format.

Evaluation Team members assess the students work, presentations & report.

Note, that for students taking the major in Fluid Mechanics of Mechanical Engineering Modeling MSc, various Final Project A proposals are announced also by the Department of Hydrodynamic Systems (under their own subject code BMEGECGMWDA).
Final Project B

BMEGEÁTMWDB

The aim of the course is to develop and enhance the capability for complex problem solving of the students under advisory management of their project supervisor and two advisors. Each student’s project is guided by the project supervisor and depending on the problem—if applicable—by two advisors. They form the so-called Evaluation Team (ET). ET meetings are organized 3 times per semester.

Detailed thematic description of the subject: Several experimental and/or numerical (CFD) final project proposals will be announced by the project leaders well before the registration week. The final project proposals are defined as being complex problems of mainly fluid mechanics, usually they must be the continuation of the major projects’ proposals. The students will work on complex problems proposed in the 3rd semester in course of the Final Project A (BMEGEÁTMWDA). The Final Projects A and B together serves as a two-semester project that results in the Master (MSc) Thesis of the student. In course of the Final Project B one single student will work on the selected challenging problem of fluid mechanics.

1st ET meeting - 4th week:
- 1st project presentation by the student
2nd ET meeting - 8th week:
- 2nd project presentation by the student
3rd ET meeting - 14th week:
- 3rd final project presentation by the student
15th week: submission of the final Project Report (ie, the Master Thesis) in printed and electronic format. Evaluation team members assess the students work, presentations & report.

Note, that for students taking the Final Project A that was announced by the Department of Hydrodynamic Systems (under subject code BMEGEVGMWDA) must continue their project in course of the Final Project B announced also by the Department of Hydrodynamic Systems (under code BMEGEVGMWDB).

Subjects in Economics and Human Sciences

Marketing

BMEGT20MW01

Management

BMEGT20MW02

The objectives of the course are that the students know the duties of management and the attributes of the manager job with the current formed perception in different ages. Over the set targets the students will understand the characteristics of human behavior, the behavior of managers and their employees, the team properties in the labor-environment and the corporations how develop their functional rules. The applicable (for previous) management methods and their expected effects on the members of corporation and their capacities are presented in the course of the discussed themes.

Major Elective and Further Elective Subjects

Biologically Inspired Systems

BMEGEMIMGBI

The design of engineering structures increasingly involves mimicking and improvement of natural, living structures to perfection. In addition to a more accurate understanding and systematization of living systems, it is increasingly important that both engineering students and engineers get acquainted with this topic. The basic goal of the course is the analysis of different biological systems and of the engineering structures mimicking them through engineering and systems theory considerations. Specific solutions of biological systems for different materials, structures, sensor systems, motion and control can be properly applied.

Large-Eddy Simulation in Mechanical Engineering

BMEGEÁTMW05

The main objective of the subject is to get familiar with the concept of Large-Eddy Simulation and its widely used techniques. A secondary objective is to gain knowledge about post-processing techniques especially suited for instantaneous and steady 3D flow data. Applications from turbulent heat transfer and noise production will be shown. Detailed thematic description of the subject: Motivations why to use Large-Eddy Simulation (LES). Filtering of the incompressible Navier-Stokes equations, basic filter properties. Numerical requirements of the simulation. Subgrid scale modeling approaches. Interacting error dynamics. Practical aspect of the simulation (domain time and mesh requirements). Special LES boundary conditions: inlet turbulence generation. Hybrid and zonal LES/RANS approaches. Postprocessing of LES results: flow topology description, vortex detection methods. Case studies: internal cooling channel, flow around an airfoil, near field of a jet.

Multiphase and Reactive Flow Modeling

BMEGEÁTMW17

Building Aerodynamics

BMGEÁTMW08

Aerodynamics and Its Application for Vehicles

BMGEÁTMW19

Introduction, bluff body aerodynamics. Characteristics of atmospheric boundary layer. Basics of car design (in cooperation with MOME: Moholy-Nagy University of Arts and Design Budapest). Aerodynamics of automobiles. Aerodynamics of buses and trucks. Aerodynamics of racing cars. Wind tunnels and their use for vehicle aerodynamics. Definition of projects, forming groups of students. Measurement of car models evaluation of car bodies from aerodynamic and design point of view (in co-operation with MOME: Moholy-Nagy University of Arts and Design Budapest). Individual project: passenger car modeling. 2-4 students form one group. Every group will receive two modeling wood of 3 various given dimensions. With the help of plasticine, a passenger car of M 1:20 scale can be created. The relative position of the pieces of wood can be freely chosen, as far as the model resembles a car. The ground clearance (underbody gap) is 11mm, the distance of the axes is 140mm. The diameter of the wheels is 30mm, their width is 8mm. Wheels can be formed of the plasticine provided. In the larger piece of wood – under the passenger compartment – four boreholes are created, in order to attach the model to the aerodynamic force measuring mechanism. The maximum length of the model is 250mm, its minimum height is 60mm, and its width is between 82 and 90mm. The perpendicular cross section of the model has to be determined (together with the wheels), in order to determine drag and lift coefficients. There is a possibility to place attachments on the car model, like spoilers, ski boxes, etc. Besides the force measurement, there will be a possibility for flow visualization around the car, during which the location and size of the separation bubbles, the size of the dead water region behind the car, effect of spoilers and other attachments, and soiling of the rear face of the car can be observed. The measurements groups have to prepare a project presentation on the last class. The groups have to send their presentation by e-mail 2 working days before the presentation at the latest.

Advanced Technical Acoustics and Measurement Techniques

BMGEÁTMW10

3D homogeneous wave equation and the general solution. The 3D solution of the wave equation in bounded space, room modes. The sound propagation in tubes, the sudden cross-sectional area change and tube termination. The simple expansion chamber silencer, and the sound propagation in horns. Sound propagation in duct and higher order modes. The ray theory, sound propagation in non-homogeneous media. Spherical waves, and the point monopole, dipole and quadrupole sound sources, model laws. The flow generated sound, Lighthill’s acoustic analogy and the inhomogeneous wave equation. The attenuation of sound waves. Acoustic measurements, microphones, analysers, calibrators, Anechoic and reverberating chambers. Basic acoustic measurement problems. The sound intensity measurement, the microphone array.

Open Source Computational Fluid Dynamics

BMGEÁTMW11

Introduction to OpenFOAM including Linux basis, and other required software such as gnuplot and paraview. Installation of OpenFOAM on several Linux distributions and virtual linux systems (Ubuntu, Opensuse, Fedora) from packages and on other systems from source. Solution of simple 2D fluid dynamics problems using OpenFOAM (driven cavity flow, 2D boundary layer, Poiseuille flow) including the comparison with theoretical results. Detailed introduction to OpenFOAM software components including meshing tools, solvers and post-processing tools. Single phase stationary and transient flows, turbulence, compressible flows. Introduction to models, boundary conditions and solvers required for the simulation of these problems. Examples on these problems. Multiphase and reactive flows, including the introduction to models, boundary conditions and solvers required for the simulation of these problems. Examples on these problems. Extension of OpenFOAM capabilities by program code development in C++. Compiling code components, the implementation of boundary conditions, applications and models. Personalized projects using OpenFOAM. Further open source CFD tools (Code Saturn, Palabos).

Unsteady Flows in Pipe Networks

BMGEVGMW02

Hemodynamics

BMGEVGMW06

Flow Stability
BMEGEVGMW07

Theoretical Acoustics
BMEGEVGMW08
Wave equation. Lighthill’s theory, monopole, dipole, quadrupole sound sources. Green’s functions on the example of the vibrating string. Free space Green’s functions. Modification of Green’s functions in the vicinity of solid bodies. Vortex sound equation.

Solid Mechanics module

Primary Subjects

Machine Design and Production Technology
BMEGEGEMW01
The goal of the course is to give a theoretical overview on the fields of machine design and production technology, according to the detailed topics below. Some elements of the methodology is covered on the seminars throughout a semester project.

Finite Element Analysis
BMEGEMMMW02
Continuum Mechanics
BMEGEMMMM03

Teamwork Project
BMEGEMMMW1
Solution of complex problems by forming group of students including the following topics: cutting processes, vibration measurements, robot control, stability theory.

Final Project A
BMEGEMMWADA
The Final Project A subject is dedicated to the preparation of the first half of the MSc thesis. Each student must choose a proposal and a supervisor or supervisors. The proposals are available at the websites of the department or these can be requested from the professors in the course of a personal communication. The aim of the subject is to develop and enhance the problem solving capability of the students under advisory management of their supervisor. The requirement is a practical mark at the end of the semester, which is determined entirely by the supervisor.

Final Project B
BMEGEMMWDB
The Final Project B subject is dedicated to prepare the second half of the MSc thesis. As the continuation of the Final Project B, the aim of the subject is to demonstrate the ability of the student to solve high level, practical engineering problems, based on acquired knowledge in the fields of mechanical engineering. In some special cases the students can choose a different topic than that of the Final Project A, however, in this case the thesis should be prepared in the course of one semester. The projects have to be prepared by the students under the guidance of supervisors. The Final Projects include tasks in design, simulations, laboratory tests, manufacturing as well as controlling, interfacing and software tasks. The expected result is mostly a Final Report prepared according to written formal requirements. During the Final Exam, the results have to be explained in an oral presentation.

Subjects in Economics and Human Sciences

Marketing
BMEGTM01

Management
BMEGTM02
The objectives of the course are that the students know the duties of management and the attributes of the manager job with the current formed perception in different ages. Over the set targets the students will understand the characteristic of human behavior, the behavior of managers and their employee, the team properties in the labor-environment and the corporations how develop their functional rules. The applicable (for previous) management methods and their expected effects on the members of corporation and their capacities are presented in the course of the discussed themes.

Major Elective and Further Elective Subjects

Biologically Inspired Systems
BMEGEMIGBI
The design of engineering structures increasingly involves mimicking and improvement of natural, living structures to perfection. In addition to a more accurate understanding and systematization of living systems, it is increasingly important that both engineering students and engineers get acquainted with this topic. The basic goal of the course is the analysis of different biological systems and of the engineering structures mimicking them through engineering and systems theory considerations. Specific solutions of biological systems for different materials, structures, sensor systems, motion and control can be properly applied.

Elasticity and Plasticity
BMEGEMMW05
Nonlinear Vibrations
BMEGEMMWW06

Coupled Problems in Mechanics
BMEGEMMWW07

Mechanisms
BMEGEMMWW08

Beam Structures
BMEGEMMWW09

Experimental Methods in Solid Mechanics
BMEGEMMWW10
Thermal Engineering module

Primary Subjects

Machine Design and Production Technology
BMEGEEMW01
The goal of the course is to give a theoretical overview on the fields of machine design and production technology, according to the detailed topics below. Some elements of the methodology is covered on the seminars throughout a semester project.

Combustion Technology
BMEGEENMWCT
Course is started with introduction of fuel properties and fuel supply systems. It is followed by calculation of mass and energy balance of combustion, stoichiometry and CO2 and pollutant emission, flue gas loss calculation, condensation of flue gas components. Heat transfer in combustion chamber has important role on energy balance and retention time formation. After that combustion process of different fuels, parameters of combustion will be presented as homogenous / heterogeneous reactions, flow type and concentration effects on chemical reactions. Nowadays application of catalysts in combustion process and flue gas cleaning has become important part of this technology. Anaerobe biogas generation, gas cleaning and features and gasification technology overview, features of generated gas, gas cleaning technologies, tar filtering and/or condensation, torrefaction and pirolisis will be discussed as well. Carbon capture and storage (CCS) technologies will be also presented. In the end comparison of different thermal conversion technologies (combustion, gasification, etc.) on mass and energy balance will be presented. Finally solutions applied in firing technic will be demonstrated as firing system in general, control and regulation, firing system principals for liquid and gaseous fuels, and for solid fuels, and waste material incineration.

Energy Conversion Processes and Its Equipement
BMEGEENMWEP

Teamwork Project
BMEGEENMWPR
The complex task covers a semester project in the diverse topics of energetics.

Final Project A
BMEGEENMWDA
In course of the Final Project A one student or group of 2 students will work on one selected challenging problem of mechanical engineering. Several experimental and/or numerical project proposals will be announced by the project leaders. The aim of the course is to develop and enhance the capability of the students for solving complex problem under advisory management of their project leader. At the end of each semester a written Project Report is to be submitted and the summary and findings of the investigations on the selected problem is to be presented as Project Presentation.

Final Project B
BMEGEENMWDB
The aim of the subject of is to demonstrate the ability of the student to solve high level, practical engineering problems, based on acquired knowledge in the fields of mechanical engineering. The projects have to be prepared by the students under the guidance of supervisors. The Final Projects include tasks in design, simulations, laboratory tests, manufacturing as well as controlling, interfacing and software tasks. The expected result is mostly a Final Report prepared according to written formal requirements. During the Final Exam, the results have to be explained in an oral presentation.

Subjects in Economics and Human Sciences

Marketing
BMEGT20MW01

Management
BMEGT20MW02
The objectives of the course are that the students know the duties of management and the attributes of the manager job with the current formed perception in different ages. Over the set targets the students will understand the characteristic of human behavior, the behavior of managers and their employee, the team properties in the labor-environment and the corporations how develop their functional rules. The applicable (for previous) management methods and their expected effects on the members of corporation and their capacities are presented in the course of the discussed themes.

125

Faculty of Mechanical Engineering
Major Elective and Further Elective Subjects

Biologically Inspired Systems

BMEGEMIMGBI

The design of engineering structures increasingly involves mimicking and improvement of natural, living structures to perfection. In addition to a more accurate understanding and systematization of living systems, it is increasingly important that both engineering students and engineers get acquainted with this topic. The basic goal of the course is the analysis of different biological systems and of the engineering structures mimicking them through engineering and systems theory considerations. Specific solutions of biological systems for different materials, structures, sensor systems, motion, and control can be properly applied.

Simulation of Energy Engineering Systems

BMEGEENMWSE

Thermal Physics

BMEGEENMWTP

Thermo-Mechanics

BMEGEENMMWTM

Steam and Gas Turbines

BMEGEENMWTU

Preliminary, property of Parsons and Laval steam turbines, property of modern steam turbines. Properties of impulse stage. Curtis stage, negative reaction number evolution, sonic speed, velocity bended, efficiency curve, properties of reaction stage, long blade bended criteria, equistress design, determination of steam turbine’s main geometry, wet steam turbines, calculate pressure variation with Stodola constants. Reheated condensation steam turbine. Design of Package gas turbine. Uncool gas turbine cycle calculation. Real gas turbine cycle and optimum parameters. Properties of single shaft and dual shaft gas turbine, wing shape theory and compressor stage.

Measurements in Thermal Engineering

BMEGEENMW/M2

Design and Technology module

Primary Subjects

Machine Design and Production Technology

BMEGEGEMW01

The goal of the course is to give a theoretical overview on the fields of machine design and production technology, according to the detailed topics below. Some elements of the methodology is covered on the seminars throughout a semester project.

Product Modeling

BMEGEGEMW02

Advanced Manufacturing

BMEGEGTMW01

Teamwork Project

BMEGEGTMWP1

The complex task covers a semester project in the diverse topics of manufacturing.

Final Project A

BMEGEGEMWDA

In course of the Final Project A one student or group of 2 students will work on one selected challenging problem of mechanical engineering. Several experimental and/or numerical project proposals will be announced by the project leaders. The aim of the course is to develop and enhance the capability of the students for solving complex problems under advisory management of their project leader. At the end of each semester a written Project Report is to be submitted and the summary and findings of the investigations on the selected problem is to be presented as Project Presentation.

Final Project B

BMEGEGEMWDB

The aim of the subject is to demonstrate the ability of the student to solve high level, practical engineering problems, based on acquired knowledge in the fields of mechanical engineering. The projects have to be prepared by the students under the guidance of supervisors. The Final Projects include tasks in design, simulations, laboratory tests, manufacturing as well as controlling, interfacing and software tasks. The expected result is mostly a Final Report prepared according to written formal requirements. During the Final Exam, the results have to be explained in an oral presentation.

Subjects in Economics and Human Sciences

Marketing

BMEGT20MW01

Management

BMEGT20MW02

The objectives of the course are that the students know the duties of management and the attributes of the manager job with the current formed perception in different ages. Over the set targets the students will understand the characteristic of human behavior, the behavior of managers and their employees, the team properties in the labor-environment and the corporations how develop their functional rules. The applicable (for previous) management methods and their expected effects on the members of corporation and their capacities are presented in the course of the discussed themes.

Major Elective and Further Elective Subjects

Biologically Inspired Systems

BMEGEMIMGBI

The design of engineering structures increasingly involves mimicking and improvement of natural, living structures to perfection. In addition to a more accurate understanding and systematization of living systems, it is increasingly important that both engineering students and engineers get acquainted with this topic. The basic goal of the course is the analysis of different biological systems and of the engineering structures mimicking them through engineering and sys-
tems theory considerations. Specific solutions of biological systems for different materials, structures, sensor systems, motion and control can be properly applied.

CAD Technology

BMEGEGEMW04

Material Science

BMEGEMTMW01

Structural Analysis

BMEGEGEMW05

Process Planning

BMEGEGTMW02

Introduction; demands and requirements of absolving mark in the subject; principles, concepts, terms, definitions concerning on manufacturing process planning and manufacturing processes, equipment, tooling and experience; The stages and steps of manufacturing process planning; deterministic and heuristic methods, issue of Type and Group Technology, methods of prevention and elimination; Production analysis; general sequencing problems; determination of all sequence variations; methods of matrix reduction and vector variants; abstract methods for process plans and production workflows; Scheduling; Process chains and diagrams; shop-floor programming and scheduling (GANTT diagrams). Network plans, lead control (Process graphs and trees), process chain representations, diagrams (Workflow techniques). Assembly (objects); definitions of assembly; units and items, object oriented assembly tree and documents Assembly and manufacturing (processes); assembly procedures, operations, methods and organisation structures; process oriented assembly tree and documents. Quality control (object and process oriented view of quality assurance); probability functions and distributions, dimensional chains and analysis; assembling methods and assurance; economic view of manufacturing; Quality assurance; Production strategies (TQC, JIT); statistical process control (SPC); measure and charts of process capability; charts attributes.

NC Machine Tools

BMEGEGTMW03

The lectures include the following topics: Fundamentals of the kinematics of machine tools and the NC technology. Classification of metal-cutting machine tools. Selection criteria of machine tools. Structural building blocks: friction, rolling and hydrostatic guideways; ball screws; linear motors; rack and pinion mechanisms; hydrostatic screws; indexing and NC rotary tables; rotary actuators: gears, worm wheel, torque motor. Spindles: belt drive, gear drive, direct drive, integrated spindle; rolling, hydrostatic, aeroelastic bearings; tool holders and tool clamping; lathe and milling spindles. Lathes and turning centres. Milling machines and machining centers. Automatic tool and workpiece changing peripheries. Multi-functional machine tools. Parallel kinematics machine tools. The seminars support the design assignment and help the student in selecting the motion unit components (i.e. ball screw, rolling guideway, servo motor) and designing the main structural element (i.e. frames, moving slides, tool changers) of machine tools.

Fatigue and Fracture

BMEGEMTMW02

PhD Degree

The Faculty of Mechanical Engineering (GPK) at the Budapest University of Technology and Economics (BME) offers degree programs in both Hungarian and English. Most students from abroad choose to study in English.

The BME GPK is a strongly research-oriented university that has conferred doctoral degrees since the 19th century in various fields of engineering.

The academic staff of our Faculty are doing research in the most relevant fields of the mechanical engineering discipline, and related applied sciences. PhD candidates are welcome to take part in this research work in order to prepare for the PhD procedure.

PhD at the BME GPK is a degree that can be earned by sufficiently proving the candidate’s ability for self-standing scientific work that must be demonstrated by writing a thesis summarising the candidate’s research results. Furthermore, it is necessary to pass a set of qualifying examinations in some basic and applied sciences related to the field of the submitted thesis. Candidates are to publish their results prior to the submission of their theses.

Applicants for the PhD program must hold an MSc degree issued by an academic institution and must possess an overall understanding of, and a high competence in, their field of knowledge. They must also be capable of using research techniques. Admission requirements include excellent grades (mainly or exclusively A’s), an excellent MSc (or equivalent) final project, and/or the achievement of good initial results in research. Besides their professional achievements, applicants should also demonstrate a sense of responsibility for the advancement of scientific knowledge.

PhD candidates carry out their studies and research on an individual basis under the guidance of a professor or a senior member of the academic staff at the faculty concerned. This research work must contribute to scientific knowledge in general, and it must be recognized as such by the international scientific community. In order to prove this, doctoral candidates must present their research results at national and international conferences and symposia, and they are expected to publish the significant and major achievements of their work in internationally referred professional periodicals.

Besides the research work, the PhD supervisor usually recommends the participation in various courses related to the research topic. In such a case, the appropriate examinations must be successfully completed, the results of which will be documented in the transcripts of the candidate. Similarly, the advancement in individual study and research will be documented on a semester basis by the supervisor.

Working towards a PhD degree requires at least 3 years (6 semesters) of study. This time might be considerably longer, depending on the topic and the candidate’s personal diligence. It is possible to set individual PhD study plans for candidates who spend certain parts of their preparation period at other institution/s, e.g. their own original research-oriented affiliation or another university.

Upon completing all necessary work for the PhD thesis, this dissertation must be prepared according to the formal requirements in the Doctoral Code of the Budapest University of Technology and Economics. According to the procedural code of our university, every PhD candidate individually must apply to the Doctoral Board of the faculty concerned. However, the recommendation of the supervising professor and department, including the attachment of the protocol of the departmental public presentation of the thesis (with the comments and recommendations of several departmental and/or internal referees, and other professional experts of the field) is a strong expectation.

The doctoral board will appoint an independent examination board for each candidate which consists of the President, two examiners and several jury members. Final decision lies on this board after hearing the public presentation and defense of the thesis work and the subject examination.

The conferred degree is declared and testified by a corresponding PhD diploma at the next solemn ceremony of the university by the Rector of the University concerned.

NOTE:

Individual research topics and their overall conditions are formulated in negotiations between candidates and supervisors at BME.
BME GPK guidelines for acceptance to the PhD programme

1. The primary condition of admission to post-graduate studies is that the applicant must hold an MSc-degree in Mechanical Engineering, or in some closely related fields. Minimum requirement is at least “good” (min. 3.51 out of 5.00 or equivalent) qualification of the diploma.

2. Applicants are expected to have a definite scope of research in the following fields:
 - mechanical engineering (materials science and technology, solid or fluid mechanics, thermal engineering, combustion, process engineering, building services, manufacturing, engineering design, polymer science and technology),
 - mechatronics (robotics, system and control technology, optics, measurement, instrumentation technologies, biomechatronics),
 - energy engineering (heat and power generation, energy systems)
where they would like to advance their knowledge. They are requested to present a proposal, specifying a domain of interest with some research objectives, milestones and deliverables during the postgraduate studies. The suggested topic should have sufficient preliminaries in their university studies.

3. Applicants with experience and initial results are asked to submit a short summary of preliminary research activities together with relevant reports, published papers, which give help in the admission process.

4. Applicants should also submit two recommendations given by renowned academic personnel.

5. It is highly preferable when applicants have already agreed with the future supervisor prior to the application.

6. Each admission is valid only for the forthcoming academic year (starting right after the letter of acceptance).

7. Application procedure is as follows:

 Application deadline: 1st July for Fall semester, 15th October for Spring semester.

 Application fee, processing, postage: EUR 100 (non-refundable). The application will be considered and communication is assured when application fee has been transferred to the bank account of BME, and submitted all the required documents.

 Documents to submit:
 - application form (online) completely filled (be careful that your personal data appear correctly as are in your passport because they will be the form to appear in your transcripts and degree certificate)
 - copy of your passport
 - one of the following documents of internationally recognized English language proficiency:
 a) TOEFL iBT test score of 90, or PBT score 550,
 b) Cambridge First Certificate "B",
 c) IELTS score of 5.0
 - official transcripts, degrees/diplomas of any higher education already completed. Notarized English translation
 - 4 recent photographs
 - curriculum vitae (autobiography/résumé)
 - two letters of recommendation
 - Study Plan (agreed with the supervisor)

 NOTE: Notarization is necessary for every school leaving document even if the original is in English. Notification of your acceptance/rejection will be sent to you after your complete application has been reviewed. All necessary further information will be attached to the letter of acceptance.
The Faculty of Natural Sciences, one of the newest faculties at the Budapest University of Technology and Economics, was established in 1998 and now employs 190 full and part time faculty members. The Faculty provides classes in Physics, Mathematics and Cognitive Science and is designed to meet the needs of its own and other faculties.

Courses are offered on BSc and MSc degree levels. The Faculty provides post-graduate scientific training as well. Currently more than 100 PhD students are pursuing personal programs in different areas of sciences. The Faculty also offers short courses on specific topics of current interest.

The Faculty of Natural Sciences administers its own BSc and MSc programs in Physics, Mathematics, Applied Mathematics and Cognitive Science. A continuing educational program is also offered in Reactor Physics and Reactor Technology. For many years the “Eugene Wigner International Training Course for Reactor Physics Experiments” has also been organized on a yearly basis.

The BSc in Physics Program, a traditional curriculum, leads to a BSc degree in 6 semesters. The facilities and scientific-tutorial background of the Institute of Physics and the Institute of Nuclear Techniques offer unique opportunities in areas like low temperature physics, acousto-optics, holography, nuclear techniques or medical physics. A further advantage of our Physics BSc Program is the engineering background provided by the Budapest University of Technology and Economics. From the forth semester students can choose specialized courses in the topic of Advanced mathematics, Advanced physics, Computer programming, Optics, Material science, Nuclear technology, and Medical physics.

In another 4 semesters an MSc in Physics degree can be earned. This program provides comprehensive knowledge, built upon strong theoretical and experimental bases in four areas of specialization. Students who choose the specialization “Physics” get acquainted with theoretical tools of modern physics and with state of the art experimental methods. In addition to the obligatory courses students can choose specialized professional courses in the topic of Quantum physics, Solid state physics, Statistical physics, Nanotechnology and material science, Optics and photonics, Nuclear technology, and Medical physics. A post-graduate PhD programme in Physics is available in all domains offered in the MSc programme.

The BSc in Mathematics Program, a traditional curriculum, leads to a BSc degree in 6 semesters. This program is recommended first of all to those who are interested in a deeper understanding of some branches of mathematics and in doing theoretical research and are probably going to continue their studies in a Mathematics or an Applied mathematics MSc program. Moreover, the BSc program is also recommended to students who are eager to apply their knowledge in industry or finance.
In another 4 semesters an MSc in Mathematics or MSc in Applied Mathematics degree can be earned. A large variety of subjects are offered in the MSc in Mathematics Program, covering the topics algebra and number theory, analysis, geometry, probability theory and statistics, discrete mathematics, operations research. There is a large flexibility in choosing subjects according to the personal interests of the student. From the available subjects we also offer two specializations called “Analysis” and “Optimization”. Currently our MSc in Mathematics program is available only in Hungarian.

Students of the MSc in Applied Mathematics Program choosing the “Applied Analysis” specialization will meet applications of mathematical analysis in natural sciences, finance and industry. Graduates from the “Operations Research” specialization are able to create models for problems in controlling systems or optimization. Students who specialized in “Financial Mathematics” can analyze financial processes or insurance problems and are able to interpret the results. Graduates from the “Stochastics” specialization can recognize and study random laws in various phenomena. The language of courses of the specializations “Applied Analysis” and “Operation Research” is Hungarian, but the specializations “Financial Mathematics” and “Stochastics” is English.

MSc in Computational and Cognitive Neuroscience (currently available only in Hungarian). The aim of the master program is to train researchers skilled in complex analysis of human cognition and knowledge relying on the methods of science. Students may complete courses in all major domains of cognitive science including cognitive psychology, neuroscience, linguistics and the philosophy of science. Students will be equipped with both theoretical knowledge and practical skills such as statistical analysis and research ethics. Graduates will be able to carry out research in various areas of cognitive science combining theoretical insights and methods of biological (neuroscience, experimental psychology, developmental studies), and formal (mathematics, logic, philosophy of science, linguistics) disciplines. Graduates’ competences allow them to undertake doctoral studies, and to work in a variety of applied domains including medicine, biotechnology and education.

Continuing educational program in reactor physics and technology is a four semester program offered to professionals working in the nuclear industry. The subjects include reactor physics, thermohydraulics, radiation protection, radiochemistry, reactor technology, nuclear safety and laboratory experiments.

The Institute of Nuclear Techniques organises - or participates actively in the organisation of - several international courses as well. Worth mentioning are the HUVINETT (Hungarian Vietnamese Nuclear Engineering Train the Trainers) courses, where more than 150 Vietnamese educational professionals attended in 2013 and 2014. Also the participants of the training courses offered by the international EERRI consortium (Eastern European Research Reactor Initiative) perform experiments in the Training Reactor of the BME INT. In this consortium institutes of 5 Eastern European countries cooperate, with the organisatory and financial aid of the International Atomic Energy Agency (IAEA).

Postgraduate program in Operations Research in four semesters is recommended to professionals - with MSc - who often meet problems related to optimization (economists, engineers, etc.). The program includes theoretical classes (bases of discrete, continuous and stochastic optimization) and practice oriented classes as well (modelling, software packages, algorithm implementation, etc.). In the second and third semester students carry out individual projects which help them to obtain the required knowledge and practice for the future.

Institutes

Institute of Mathematics
Department of Algebra
Department of Analysis
Department of Differential Equations
Department of Geometry
Department of Stochastics

Institute of Nuclear Technologies
Department of Nuclear Techniques
Department of Nuclear Energy

Institute of Physics
Department of Atomic Physics
Department of Physics
Department of Theoretical Physics

Department of Cognitive Science

Budapest University of Technology and Economics
Faculty of Natural Sciences
Faculty Office:
Building K, 1st floor 18.
Mailing address:
H-1111 Budapest, Műegyetem rkp. 3.
Phone: (+36-1) 463-3561
Fax: (+36-1) 463-3560

Dean of the Faculty: Dr. János Pípek
Vice-dean (finance): Dr. Imre Varga
Vice-dean (Scientific and International):
Dr. György Károlyi
Vice-dean (education): Dr. István Prok
Curriculum of BSc in Physics

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture / Practice / Laboratory / Exam type / Credit</th>
<th>Name</th>
<th>Code</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics</td>
<td>All of them must be completed: 28 credits</td>
<td>Mathematic Methods in Physics 1</td>
<td>BMETE92AF35</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mathematical Methods in Physics 2</td>
<td>BMETE92AF36</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Analysis for Physicists</td>
<td>BMETE93AF09</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multivariate Analysis for Physicists</td>
<td>BMETE91AF01</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Probability Theory for Physicists</td>
<td>BMETE95AF00</td>
<td>K</td>
</tr>
<tr>
<td>Fundamental Physics</td>
<td>All of them must be completed: 24 credits</td>
<td>Experimental Physics 1</td>
<td>BMETE13AF02</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practical Course in Experimental Physics 1</td>
<td>BMETE11AF26</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Experimental Physics 2</td>
<td>BMETE13AF03</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practical Course in Experimental Physics 2</td>
<td>BMETE12AF20</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Experimental Physics 3</td>
<td>BMETE15AF21</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Comprehensive Examination in Experimental Physics</td>
<td>BMETE11AF11</td>
<td>KR</td>
</tr>
<tr>
<td>Advanced Physics</td>
<td>All of them must be completed: 30 credits</td>
<td>Mechanics 1</td>
<td>BMETE15AF23</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practical Course in Mechanics 1</td>
<td>BMETE15AF24</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quantum Mechanics 1</td>
<td>BMETE15AF27</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practical Course in Quantum Mechanics 1</td>
<td>BMETE15AF28</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electrodynamics 1</td>
<td>BMETE15AF25</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practical Course in Electrodynamics 1</td>
<td>BMETE15AF26</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Statistical Physics 1</td>
<td>BMETE15AF29</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practical Course in Statistical Physics 1</td>
<td>BMETE15AF30</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introduction to Solid State Physics</td>
<td>BMETE11AF05</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practical Course in Solid State Physics</td>
<td>BMETE11AF06</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Applied Solid State Physics</td>
<td>BMETE11AF11</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Optics</td>
<td>BMETE12AF35</td>
<td>K</td>
</tr>
<tr>
<td>Laboratory, measurement techniques, electronics</td>
<td>All of them must be completed: 32 credits</td>
<td>Introductory Laboratory Exercises</td>
<td>BMETE11AF22</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Laboratory Exercises in Physics 1</td>
<td>BMETE11AF28</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Laboratory Experiments in Physics 2</td>
<td>BMETE11AF29</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electronics</td>
<td>BMETE12AF27</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Laboratory of Electronics</td>
<td>BMETE80AF03</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Measurement Techniques</td>
<td>BMETE11AF30</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advanced Laboratory Experiments in Physics 1</td>
<td>BMETE11AF32</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advanced Laboratory Experiments in Physics 2</td>
<td>BMETE11AF33</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advanced Laboratory Experiments in Physics 3</td>
<td>BMETE12AF21</td>
<td>K</td>
</tr>
<tr>
<td>Computer programming, numerical methods</td>
<td>All of them must be completed: 10 credits</td>
<td>Programming</td>
<td>BMEVIEEA024</td>
<td>KV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Programming 2</td>
<td>BMEVIEEA026</td>
<td>KV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Numerical Computations for Physicists</td>
<td>BMETE92AF01</td>
<td>KV</td>
</tr>
<tr>
<td>Others</td>
<td>All of them must be completed: 10 credits</td>
<td>Chemistry</td>
<td>BMVEFKA144</td>
<td>KV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Radiation Protection and its Regulatory Issues</td>
<td>BMETE80AF24</td>
<td>KV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Management and Business Economics</td>
<td>BMECT20A003</td>
<td>KV</td>
</tr>
<tr>
<td>Specialized courses</td>
<td>27 credits must be completed</td>
<td>Advanced Mathematics</td>
<td>BMETE15AF31</td>
<td>KV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introduction to Experimental Data Handling</td>
<td>BMETE80AF25</td>
<td>KV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Functional Analysis for Physicists</td>
<td>BMETE92AF02</td>
<td>KV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Group Theory for Physicists</td>
<td>BMETE11AF35</td>
<td>KV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advanced Physics</td>
<td>BMETE15AF32</td>
<td>KV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practical Course in Mechanics 2</td>
<td>BMETE15AF44</td>
<td>KV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quantum Mechanics 2</td>
<td>BMETE15AF36</td>
<td>KV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practical Course in Quantum Mechanics 2</td>
<td>BMETE15AF43</td>
<td>KV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electrodynamics 2</td>
<td>BMETE15AF34</td>
<td>KV</td>
</tr>
</tbody>
</table>
Curriculum of BSc in Physics (contd.)

<table>
<thead>
<tr>
<th>Subject Type</th>
<th>Subject Description</th>
<th>Code</th>
<th>Type</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject Lecture</td>
<td>Practical Course in Electrodynamics</td>
<td>BMETE15AF42</td>
<td>KV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0/2/0/1/3</td>
</tr>
<tr>
<td></td>
<td>Fluid Mechanics</td>
<td>BMETE12AF11</td>
<td>KV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2/0/0/1/3</td>
</tr>
<tr>
<td></td>
<td>Classical and Quantum Chaos</td>
<td>BMETE15AF39</td>
<td>KV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2/0/0/1/2</td>
</tr>
<tr>
<td></td>
<td>Theory of Relativity</td>
<td>BMETE15AF38</td>
<td>KV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2/0/0/1/2</td>
</tr>
<tr>
<td>Computer programming</td>
<td>Computer Controlled Measurements</td>
<td>BMETE11AF37</td>
<td>KV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0/0/2/1/2</td>
</tr>
<tr>
<td>Fluid Mechanics</td>
<td>The Fundamentals and Applications of Finite Element Modeling</td>
<td>BMETE12AF24</td>
<td>KV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0/0/2/1/2</td>
</tr>
<tr>
<td></td>
<td>Computer Solution of Technical and Physical Problems</td>
<td>BMETE11AF36</td>
<td>KV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0/0/2/1/2</td>
</tr>
<tr>
<td></td>
<td>Monte Carlo Methods</td>
<td>BMETE80AF26</td>
<td>KV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2/1/0/1/3</td>
</tr>
<tr>
<td>Optics</td>
<td>Spectroscopy</td>
<td>BMETE12AF28</td>
<td>KV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2/0/0/1/2</td>
</tr>
<tr>
<td></td>
<td>Laser Technique</td>
<td>BMETE12AF07</td>
<td>KV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2/0/0/1/2</td>
</tr>
<tr>
<td></td>
<td>Microscopy</td>
<td>BMETE12AF09</td>
<td>KV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2/0/0/1/2</td>
</tr>
<tr>
<td>Materials science</td>
<td>Foundations of Biophysics</td>
<td>BMETE12AF10</td>
<td>KV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2/0/0/1/2</td>
</tr>
<tr>
<td></td>
<td>Fundamentals and Applications of Materials Science</td>
<td>BMETE12AF25</td>
<td>KV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2/0/0/1/2</td>
</tr>
<tr>
<td></td>
<td>Microtechnology and Nanotechnology</td>
<td>BMETE12AF08</td>
<td>KV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2/0/0/1/2</td>
</tr>
<tr>
<td>Nuclear technology</td>
<td>Nuclear Physics</td>
<td>BMETE80MD00</td>
<td>KV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/1/0/1/5</td>
</tr>
<tr>
<td></td>
<td>Nuclear Measurement Techniques</td>
<td>BMETE80MD01</td>
<td>KV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/1/0/1/3</td>
</tr>
<tr>
<td></td>
<td>Nuclear Safety</td>
<td>BMETE80MD05</td>
<td>KV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2/0/0/1/2</td>
</tr>
<tr>
<td></td>
<td>Radioactive Waste Management</td>
<td>BMETE80MD07</td>
<td>KV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2/0/0/1/2</td>
</tr>
<tr>
<td></td>
<td>Plasma Physics</td>
<td>BMETE80MD02</td>
<td>KV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/1/0/1/4</td>
</tr>
<tr>
<td>Medical physics</td>
<td>Medical Imaging Systems</td>
<td>BMETE80AF17</td>
<td>KV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2/0/0/1/2</td>
</tr>
<tr>
<td>Supervised research</td>
<td>BSc Thesis Project</td>
<td>BMETE15AF11</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0/0/1/0/1/10</td>
</tr>
<tr>
<td>Elective courses</td>
<td>9 credits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9 credits must be completed</td>
</tr>
</tbody>
</table>

Exam type: v = exam, f = midterm exam, a = signature, s = comprehensive exam
Subject type: K = obligatory, KV = elective, V = optional, KR = criterium
Curriculum of BSc in Mathematics

<table>
<thead>
<tr>
<th>Subject</th>
<th>Code</th>
<th>Type</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obligatory courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basics of Mathematics</td>
<td>BMETE91AM35</td>
<td>K</td>
<td>2/0/0/V/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculus 1</td>
<td>BMETE92AM36</td>
<td>K</td>
<td>6/2/0/V/9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Algebra 1</td>
<td>BMETE91AM36</td>
<td>K</td>
<td>6/2/0/V/9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Geometry</td>
<td>BMETE94AM17</td>
<td>K</td>
<td>2/0/0/V/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Informatics 1</td>
<td>BMETE91AM42</td>
<td>K</td>
<td>1/0/2/V/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculus 2</td>
<td>BMETE92AM37</td>
<td>K</td>
<td>6/2/0/V/8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Algebra 2</td>
<td>BMETE91AM37</td>
<td>K</td>
<td>6/2/0/V/8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combinatorics and Graph Theory 1</td>
<td>BMETE91AM43</td>
<td>K</td>
<td>1/0/2/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geometry</td>
<td>BMETE94AM18</td>
<td>K</td>
<td>4/0/0/V/6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Informatics 2</td>
<td>BMETE91AM43</td>
<td>K</td>
<td>1/0/2/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics 1 for Mathematicians</td>
<td>BMETE91AM16</td>
<td>K</td>
<td>2/0/0/V/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accounting</td>
<td>BMETE91AM16</td>
<td>K</td>
<td>2/0/0/V/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysis 1</td>
<td>BMETE92AM38</td>
<td>K</td>
<td>4/1/0/V/7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algebra 1</td>
<td>BMETE91AM38</td>
<td>K</td>
<td>4/1/0/V/7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probability Theory 1</td>
<td>BMETE95AM29</td>
<td>K</td>
<td>2/2/0/V/6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Programming Exercises for Probability Theory</td>
<td>BMETE91AM46</td>
<td>K</td>
<td>0/0/0/V/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential Equations 1</td>
<td>BMETE91AM15</td>
<td>K</td>
<td>2/2/0/V/6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Informatics 3</td>
<td>BMETE91AM44</td>
<td>K</td>
<td>2/0/2/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematical Statistics 1</td>
<td>BMETE95AM31</td>
<td>K</td>
<td>2/0/2/V/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysis 2</td>
<td>BMETE92AM39</td>
<td>K</td>
<td>2/2/0/V/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential Geometry 1</td>
<td>BMETE94AM19</td>
<td>K</td>
<td>2/1/0/V/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operations Research</td>
<td>BMETE91AM19</td>
<td>K</td>
<td>2/2/0/V/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theory of Algorithms</td>
<td>BMETE91AM47</td>
<td>K</td>
<td>2/2/0/V/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Programming Exercises for Theory of Algorithms</td>
<td>BMETE91AM47</td>
<td>K</td>
<td>0/0/0/V/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algebra 2</td>
<td>BMETE91AM39</td>
<td>K</td>
<td>4/0/0/V/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimization Models</td>
<td>BMETE91AM46</td>
<td>K</td>
<td>2/0/2/V/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stochastic Processes</td>
<td>BMETE91AM34</td>
<td>K</td>
<td>4/0/0/V/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creating Mathematical Models</td>
<td>BMETE95AM12</td>
<td>K</td>
<td>0/2/0/V/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micro- and Macroeconomics</td>
<td>BMETE91AM41</td>
<td>K</td>
<td>3/0/0/V/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applied Numerical Methods with Matlab</td>
<td>BMETE92AMxx</td>
<td>K</td>
<td>2/0/2/V/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential Geometry 2</td>
<td>BMETE94AM20</td>
<td>K</td>
<td>3/1/0/V/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finance</td>
<td>BMETE91AM41</td>
<td>K</td>
<td>2/0/0/V/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSc Thesis Project</td>
<td>BMETE90AM47</td>
<td>K</td>
<td>0/0/10/V/10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specialized courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tools of Modern Probability Theory</td>
<td>BMETE91AM33</td>
<td>KV</td>
<td>4/0/0/V/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measure Theory</td>
<td>BMETE92AM42</td>
<td>KV</td>
<td>4/0/0/V/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individual Research Project 1</td>
<td>BMETE90AM48</td>
<td>KV</td>
<td>0/0/0/V/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partial Differential Equations</td>
<td>BMETE92AM45</td>
<td>KV</td>
<td>2/2/0/V/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convex Geometry</td>
<td>BMETE94AM22</td>
<td>KV</td>
<td>2/2/0/V/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combinatorics and Graph Theory 2</td>
<td>BMETE92AM26</td>
<td>KV</td>
<td>2/2/0/V/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individual Research Project 2</td>
<td>BMETE90AM49</td>
<td>KV</td>
<td>0/0/0/V/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elective courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam type:</td>
<td>v = exam, f = midterm exam, a = signature, s = comprehensive exam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subject type:</td>
<td>K = obligatory, KV = elective, V = optional, KR = criterium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Curriculum of MSc in Physics

<table>
<thead>
<tr>
<th>Subject</th>
<th>Code</th>
<th>Name</th>
<th>Type</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Requisities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 of 6 must be completed: 12 credits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamentals of Photonics</td>
<td>BMETE12MF49</td>
<td>KV</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Nuclear Physics</td>
<td>BMETE80MF00</td>
<td>KV</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Nanotechnology and Materials Science</td>
<td>BMETE11MF36</td>
<td>KV</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Particle Physics</td>
<td>BMETE15MF43</td>
<td>KV</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Statistical Physics 2</td>
<td>BMETE15MF44</td>
<td>KV</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Computer Simulation in Physics</td>
<td>BMETE15MF45</td>
<td>KV</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Obligatory Courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All of them must be completed: 20 credits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Physics Laboratory</td>
<td>BMETExxMFxx</td>
<td>K</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seminar 1</td>
<td>BMETExxMFxx</td>
<td>K</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Seminar 2</td>
<td>BMETExxMFxx</td>
<td>K</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Seminar 3</td>
<td>BMETExxMFxx</td>
<td>K</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Seminar 4</td>
<td>BMETExxMFxx</td>
<td>K</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>a</td>
<td>0</td>
</tr>
<tr>
<td>Investments</td>
<td>BMEGT35M004</td>
<td>K</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applied Numerical Methods with Matlab</td>
<td>BMETE92MFxx</td>
<td>K</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Summer Practice</td>
<td>BMETExxMFxx</td>
<td>KR</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>a</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Thesis Work</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All of them must be completed: 50 credits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Independent Laboratory 1</td>
<td>BMETExxMFxx</td>
<td>K</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Independent Laboratory 2</td>
<td>BMETExxMFxx</td>
<td>K</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td>0</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Diploma Work</td>
<td>BMETExxMFxx</td>
<td>K</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Specialized Professional Courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29 credits must be completed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced general courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group Theory for Physicists</td>
<td>BMETE11AF40</td>
<td>KV</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Electrodynamics 2</td>
<td>BMETE15AF34</td>
<td>KV</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Practical Course in Electrodynamics 2</td>
<td>BMETE15AF42</td>
<td>KV</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Quantum Mechanics 2</td>
<td>BMETE15AF36</td>
<td>KV</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Practical Course in Quantum Mechanics 2</td>
<td>BMETE15AF43</td>
<td>KV</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Mechanics 2</td>
<td>BMETE15AF32</td>
<td>KV</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Computer Solution of Technical and Physical Problems</td>
<td>BMETE11AF41</td>
<td>KV</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Theory of Relativity</td>
<td>BMETE15AF46</td>
<td>KV</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fundamentals and Applications of Materials Science</td>
<td>BMETE12AF31</td>
<td>KV</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Microtechnology and Nanotechnology</td>
<td>BMETE12AF33</td>
<td>KV</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Computer Controlled Measurements</td>
<td>BMETE11AF38</td>
<td>KV</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Quantum Physics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantum Field Theory</td>
<td>BMETE15MF46</td>
<td>KV</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Quantum Information Processing</td>
<td>BMETE11MF42</td>
<td>KV</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Quantum Optics</td>
<td>BMETE15MF49</td>
<td>KV</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Many-Body Physics 1</td>
<td>BMETE15MF50</td>
<td>KV</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Many-Body Physics 2</td>
<td>BMETE15MF54</td>
<td>KV</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Quantum Monte Carlo Methods</td>
<td>BMETE15MF40</td>
<td>KV</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Statistical Field Theory</td>
<td>BMETE15MF39</td>
<td>KV</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>The Physics of One-Dimensional Systems</td>
<td>BMETE15MF05</td>
<td>KV</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Solid State Physics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modern Solid State Physics</td>
<td>BMETE11MF43</td>
<td>KV</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Group Theory in Solid State Research</td>
<td>BMETE11MF12</td>
<td>KV</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Superconductivity</td>
<td>BMETE11MF45</td>
<td>KV</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Theory of Magnetism</td>
<td>BMETE11MF44</td>
<td>KV</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Theory of Magnetism 2</td>
<td>BMETE11MF14</td>
<td>KV</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Magnetic Resonance</td>
<td>BMETE11MF43</td>
<td>KV</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Theoretical Nanophysics</td>
<td>BMETE15MF47</td>
<td>KV</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Electronic Structure of Solid Matter</td>
<td>BMETE15MF51</td>
<td>KV</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Foundations of Density Functional Theory</td>
<td>BMETE15MF15</td>
<td>KV</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Topological Insulators</td>
<td>BMETE11MF34</td>
<td>KV</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Topological Insulators 2</td>
<td>BMETE11MF35</td>
<td>KV</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Curriculum of MSc in Physics (contd.)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture / Practice / Laboratory / Exam type / Credit</th>
<th>Name</th>
<th>Code</th>
<th>Type</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Requisities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical Physics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evolutionary Game Theory</td>
<td></td>
<td>BMETE15MF11</td>
<td>KV</td>
<td>2/0/v/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase Transitions and Criticality</td>
<td></td>
<td>BMETE15MF48</td>
<td>KV</td>
<td>2/1/v/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complex Networks</td>
<td></td>
<td>BMETE15MF38</td>
<td>KV</td>
<td>2/0/v/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Physics of Disordered Systems</td>
<td></td>
<td>BMETE15MF53</td>
<td>KV</td>
<td>2/1/v/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Random Matrix Theory and Its Physical Applications</td>
<td></td>
<td>BMETE15MF10</td>
<td>KV</td>
<td>2/0/v/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classical and Quantum Chaos</td>
<td></td>
<td>BMETE15AF45</td>
<td>KV</td>
<td>2/0/v/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nanotechnology and Materials Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamentals of Nanophysics</td>
<td></td>
<td>BMETE11MF37</td>
<td>KV</td>
<td>3/0/v/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material Science Laboratory</td>
<td></td>
<td>BMETE12MF50</td>
<td>KV</td>
<td>0/0/3/v/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selected Topics of the Modern Materials Science</td>
<td></td>
<td>BMETE12MF52</td>
<td>KV</td>
<td>2/0/v/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics of Semiconductors 1</td>
<td></td>
<td>BMETE11MF26</td>
<td>KV</td>
<td>2/0/v/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry in Nanotechnology</td>
<td></td>
<td>BMETE11MF38</td>
<td>KV</td>
<td></td>
<td>2/0/v/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nanotechnology Laboratory</td>
<td></td>
<td>BMETE12MF54</td>
<td>KV</td>
<td>0/0/3/v/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optical Spectroscopy in Materials Science</td>
<td></td>
<td>BMETE11MF39</td>
<td>KV</td>
<td>3/0/v/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optics and Photonics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics of Semiconductors 1</td>
<td></td>
<td>BMETE11MF26</td>
<td>KV</td>
<td>2/0/v/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light Sources</td>
<td></td>
<td>BMETE12MF14</td>
<td>KV</td>
<td>2/0/v/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Optics</td>
<td></td>
<td>BMETE12MF37</td>
<td>KV</td>
<td>4/0/v/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spectroscopy and Structure of Matter</td>
<td></td>
<td>BMETE12MF25</td>
<td>KV</td>
<td>2/0/v/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laser Physics</td>
<td></td>
<td>BMETE12MF17</td>
<td>KV</td>
<td>2/0/v/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optical Metrology</td>
<td></td>
<td>BMETE11MF21</td>
<td>KV</td>
<td>2/0/v/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Foundations of Optical Communications</td>
<td></td>
<td>BMETE11MF20</td>
<td>KV</td>
<td>2/0/v/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuclear Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reactor Physics</td>
<td></td>
<td>BMETE80MD08</td>
<td>KV</td>
<td>3/1/v/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Hydraulics</td>
<td></td>
<td>BMETE80MD10</td>
<td>KV</td>
<td>2/0/v/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reactor Technology and Operation</td>
<td></td>
<td>BMETE80MD09</td>
<td>KV</td>
<td>2/0/v/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusion Devices</td>
<td></td>
<td>BMETE80MD04</td>
<td>KV</td>
<td>1/1/v/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuclear Safety</td>
<td></td>
<td>BMETE80MD05</td>
<td>KV</td>
<td>2/0/v/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuclear Techniques Laboratory</td>
<td></td>
<td>BMETE80MD03</td>
<td>KV</td>
<td>0/0/4/v/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical Physics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuclear Medicine</td>
<td></td>
<td>BMETE80MF97</td>
<td>KV</td>
<td>2/0/v/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medical Imaging</td>
<td></td>
<td>BMETE80MF91</td>
<td>KV</td>
<td>3/1/v/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetic Resonance and Clinical Applications</td>
<td></td>
<td>BMETE80MF90</td>
<td>KV</td>
<td>2/0/v/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetic Resonance and Clinical Applications 2</td>
<td></td>
<td>BMETE80MF75</td>
<td>KV</td>
<td>2/0/v/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optional Courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exam type: v = exam, f = midterm exam, a = signature, s = comprehensive exam
Subject type: K = obligatory, KV = elective, V = optional, KR = criterium

9 credits must be completed
Curriculum of MSc in Mathematics

<table>
<thead>
<tr>
<th>Subject Type</th>
<th>Subject Title</th>
<th>Code</th>
<th>Type</th>
<th>Credit</th>
<th>Requisities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical Foundations from BSc Courses</td>
<td>20 credits</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary Professional Courses</td>
<td>30 credits</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group Theory</td>
<td>BMET91MM03</td>
<td>KV</td>
<td>3/1/0/v/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commutative Algebra and Algebraic Geometry</td>
<td>BMET91MM01</td>
<td>KV</td>
<td>3/1/0/v/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fourier Analysis and Function Series</td>
<td>BMET92MM00</td>
<td>KV</td>
<td>3/1/0/v/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partial Differential Equations 2</td>
<td>BMET93MM03</td>
<td>KV</td>
<td>3/1/0/v/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamical Systems</td>
<td>BMET93MM02</td>
<td>KV</td>
<td>3/1/0/v/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General and Algebraic Combinatorics</td>
<td>BMET92MM02</td>
<td>KV</td>
<td>3/1/0/v/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combinatorial Optimization</td>
<td>BMET94MM00</td>
<td>KV</td>
<td>3/1/0/v/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theoretical Computer Science</td>
<td>BMET91MM00</td>
<td>KV</td>
<td>3/1/0/v/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential Geometry and Topology</td>
<td>BMET94MM00</td>
<td>KV</td>
<td>3/1/0/v/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Representation Theory</td>
<td>BMET91MM02</td>
<td>KV</td>
<td>3/1/0/v/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear Programming</td>
<td>BMET93MM01</td>
<td>KV</td>
<td>3/1/0/v/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global Optimization</td>
<td>BMET93MM00</td>
<td>KV</td>
<td>3/1/0/v/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematical Statistics and Information Theory</td>
<td>BMET95MM05</td>
<td>KV</td>
<td>3/1/0/v/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stochastic Analysis and its Applications</td>
<td>BMET95MM04</td>
<td>KV</td>
<td>3/1/0/v/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professional Courses</td>
<td>40 credits</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algorithms and Complexity</td>
<td>BMET92MM05</td>
<td>KV</td>
<td>3/1/0/v/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graphs, Hypergraphs and Their Applications</td>
<td>BMET92MM03</td>
<td>KV</td>
<td>2/0/0/v/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homological Algebra</td>
<td>BMET91MM06</td>
<td>KV</td>
<td>2/0/0/v/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Representations of Groups and Algebras</td>
<td>BMET91MM04</td>
<td>KV</td>
<td>3/1/0/v/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operator Theory</td>
<td>BMET92MM05</td>
<td>KV</td>
<td>3/1/0/v/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inverse Scattering Problems</td>
<td>BMET92MM08</td>
<td>KV</td>
<td>2/0/0/v/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix Analysis</td>
<td>BMET92MM03</td>
<td>KV</td>
<td>2/0/0/v/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numerical Methods 2 – Partial Diff. Equations</td>
<td>BMET92MM07</td>
<td>KV</td>
<td>2/0/2/v/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distribution Theory and Green Functions</td>
<td>BMET92MM22</td>
<td>KV</td>
<td>2/0/0/v/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potential Theory</td>
<td>BMET92MM04</td>
<td>KV</td>
<td>2/0/0/v/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Euclidean Geometry</td>
<td>BMET94MM03</td>
<td>KV</td>
<td>3/1/0/v/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combinatorial and Discrete Geometry</td>
<td>BMET94MM02</td>
<td>KV</td>
<td>3/1/0/v/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Projective Geometry</td>
<td>BMET94MM01</td>
<td>KV</td>
<td>2/2/0/v/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stochastic Programming</td>
<td>BMET93MM05</td>
<td>KV</td>
<td>3/1/0/v/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonlinear Programming</td>
<td>BMET93MM04</td>
<td>KV</td>
<td>3/1/0/v/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analytic Number Theory</td>
<td>BMET93MM13</td>
<td>KV</td>
<td>2/0/0/v/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algebraic Number Theory</td>
<td>BMET91MM07</td>
<td>KV</td>
<td>2/0/0/v/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statistical Program Packages 2</td>
<td>BMET93MM09</td>
<td>KV</td>
<td>0/0/2/v/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Limit- and Large Deviation Theorems of Probability Theory"</td>
<td>BMET95MM10</td>
<td>KV</td>
<td>3/1/0/v/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Markov Processes and Martingales</td>
<td>BMET95MM07</td>
<td>KV</td>
<td>3/1/0/v/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Theory of Dynamical Systems</td>
<td>BMET95MM12</td>
<td>KV</td>
<td>2/0/0/v/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stochastic Models</td>
<td>BMET95MM11</td>
<td>KV</td>
<td>2/0/0/v/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stochastic Differential Equations</td>
<td>BMET95MM08</td>
<td>KV</td>
<td>3/1/0/v/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Courses</td>
<td>30 credits</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematical Modelling Seminar 1</td>
<td>BMET95MM01</td>
<td>K</td>
<td>2/0/0/v/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individual Projects 1</td>
<td>BMET92MM01</td>
<td>K</td>
<td>0/0/4/v/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report</td>
<td>BMET90MM90</td>
<td>KR</td>
<td>0/0/0/v/0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparatory Course for Master’s Thesis</td>
<td>BMET90MM98</td>
<td>K</td>
<td>0/2/0/v/5</td>
<td>Report</td>
<td></td>
</tr>
<tr>
<td>Mathematical Modelling Seminar 2</td>
<td>BMET95MM02</td>
<td>K</td>
<td>2/0/0/v/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individual Projects 2</td>
<td>BMET92MM02</td>
<td>K</td>
<td>0/0/4/v/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Master’s Thesis</td>
<td>BMET90MM99</td>
<td>K</td>
<td>0/8/0/v/15</td>
<td>PrepMTesis</td>
<td></td>
</tr>
</tbody>
</table>

Exam type: v = exam, f = midterm exam, a = signature
Subject type: K = obligatory, KV = elective, V = optional
Curriculum of MSc in Applied Mathematics

Specialization in Applied Analysis

<table>
<thead>
<tr>
<th>Subject</th>
<th>Code</th>
<th>Type</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Requisities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical Foundations from BSc Courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20 credits</td>
</tr>
<tr>
<td>Commutative Algebra and Algebraic Geometry</td>
<td>BMETE91MM01</td>
<td>KV</td>
<td>3/1/0/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential Geometry and Topology</td>
<td>BMETE94MM00</td>
<td>KV</td>
<td>3/1/0/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamical Systems</td>
<td>BMETE93MM02</td>
<td>K</td>
<td>3/1/0/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fourier Analysis and Function Series</td>
<td>BMETE92MM00</td>
<td>K</td>
<td>3/1/0/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General and Algebraic Combinatorics</td>
<td>BMETE95MM020</td>
<td>KV</td>
<td>3/1/0/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global Optimization</td>
<td>BMETE93MM00</td>
<td>KV</td>
<td>3/1/0/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear Programming</td>
<td>BMETE91MM01</td>
<td>KV</td>
<td>3/1/0/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematical Statistics and Information Theory</td>
<td>BMETE95MM05</td>
<td>KV</td>
<td>3/1/0/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partial Differential Equations 2</td>
<td>BMETE93MM03</td>
<td>K</td>
<td>3/1/0/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Representation Theory</td>
<td>BMETE91MM02</td>
<td>KV</td>
<td>3/1/0/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stochastic Analysis and its Applications</td>
<td>BMETE95MM04</td>
<td>KV</td>
<td>3/1/0/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theoretical Computer Science</td>
<td>BMETE91MM00</td>
<td>KV</td>
<td>3/1/0/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Courses of Specialization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30 credits</td>
</tr>
<tr>
<td>Distribution Theory and Green Functions</td>
<td>BMETE92MM22</td>
<td>K</td>
<td>2/0/0/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geometry of Classical Field Theories</td>
<td>BMETE94MM11</td>
<td>K</td>
<td>2/0/0/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inverse Scattering Problems</td>
<td>BMETE92MM08</td>
<td>K</td>
<td>2/0/0/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematical Chemistry</td>
<td>BMETE92MM09</td>
<td>KV</td>
<td>2/0/2/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numerical Methods 2 - Partial Differential Equations</td>
<td>BMETE92MM07</td>
<td>KV</td>
<td>2/0/2/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematical Methods of Classical Mechanics</td>
<td>BMETE93MM12</td>
<td>K</td>
<td>2/0/0/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematical Methods of Statistical Physics</td>
<td>BMETE95MM27</td>
<td>K</td>
<td>2/0/0/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematical Percolation Theory</td>
<td>BMETE95MM24</td>
<td>KV</td>
<td>2/0/0/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potential Theory</td>
<td>BMETE92MM04</td>
<td>KV</td>
<td>2/0/0/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Matrix Analysis</td>
<td>BMETE92MM03</td>
<td>K</td>
<td>2/0/0/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operator Theory</td>
<td>BMETE92MM05</td>
<td>K</td>
<td>3/1/0/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vector Spaces in Physics</td>
<td>BMETE92MM21</td>
<td>K</td>
<td>2/0/0/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40 credits</td>
</tr>
<tr>
<td>Mathematical Modelling Seminar 1</td>
<td>BMETE95MM01</td>
<td>K</td>
<td>2/0/0/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individual Projects 1</td>
<td>BMETE92MM01</td>
<td>K</td>
<td>0/0/4/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report</td>
<td>BMETE90MM90</td>
<td>KR</td>
<td>0/0/4/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optional Courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10 credits</td>
</tr>
<tr>
<td>Preparatory Course for Master’s Thesis</td>
<td>BMETE90MM98</td>
<td>K</td>
<td>0/2/0/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematical Modelling Seminar 2</td>
<td>BMETE95MM02</td>
<td>K</td>
<td>2/0/0/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individual Projects 2</td>
<td>BMETE92MM02</td>
<td>K</td>
<td>0/0/4/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Master’s Thesis</td>
<td>BMETE90MM99</td>
<td>K</td>
<td>0/8/0/15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exam type: v = exam, f = midterm exam, a = signature
Subject type: K = obligatory, KV = elective, V = optional
Curriculum of MSc in Applied Mathematics
Specialization in Operation Research

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture / Practice / Laboratory / Exam type / Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Name</td>
</tr>
<tr>
<td>Theoretical Foundations from BSc Courses</td>
<td>20 credits</td>
</tr>
<tr>
<td>Primary Professional Courses</td>
<td>30 credits</td>
</tr>
<tr>
<td>Commutative Algebra and Algebraic Geometry</td>
<td>BMETE91MM01 KV</td>
</tr>
<tr>
<td>Differential Geometry and Topology</td>
<td>BMETE94MM00 KV</td>
</tr>
<tr>
<td>Dynamical Systems</td>
<td>BMETE93MM02 KV</td>
</tr>
<tr>
<td>Fourier Analysis and Function Series</td>
<td>BMETE92MM00 KV</td>
</tr>
<tr>
<td>General and Algebraic Combinatorics</td>
<td>BMETE95MM04 KV</td>
</tr>
<tr>
<td>Global Optimization</td>
<td>BMETE93MM00 K</td>
</tr>
<tr>
<td>Linear Programming</td>
<td>BMETE93MM01 K</td>
</tr>
<tr>
<td>Mathematical Statistics and Information Theory</td>
<td>BMETE95MM05 K</td>
</tr>
<tr>
<td>Partial Differential Equations 2</td>
<td>BMETE93MM03 KV</td>
</tr>
<tr>
<td>Representation Theory</td>
<td>BMETE91MM02 KV</td>
</tr>
<tr>
<td>Stochastic Analysis and its Applications</td>
<td>BMETE95MM04 KV</td>
</tr>
<tr>
<td>Theoretical Computer Science</td>
<td>BMETE91MM00 KV</td>
</tr>
<tr>
<td>Courses of Specialization</td>
<td>30 credits</td>
</tr>
<tr>
<td>Combinatorial Optimization</td>
<td>BMETE95MM029 KV</td>
</tr>
<tr>
<td>Control Systems</td>
<td>BMETE93MM07 K</td>
</tr>
<tr>
<td>Econometrics</td>
<td>BMETE93MM10 K</td>
</tr>
<tr>
<td>Game Theory</td>
<td>BMETE93MM09 K</td>
</tr>
<tr>
<td>Introduction to Economic Dynamics</td>
<td>BMETE93MM08 K</td>
</tr>
<tr>
<td>Nonlinear Programming</td>
<td>BMETE93MM04 K</td>
</tr>
<tr>
<td>Operations Research Software</td>
<td>BMETE93MM06 K</td>
</tr>
<tr>
<td>Stochastic Programming</td>
<td>BMETE93MM05 K</td>
</tr>
<tr>
<td>Other Courses</td>
<td>40 credits</td>
</tr>
<tr>
<td>Mathematical Modelling Seminar 1</td>
<td>BMETE95MM01 K</td>
</tr>
<tr>
<td>Individual Projects 1</td>
<td>BMETE92MM01 K</td>
</tr>
<tr>
<td>Report</td>
<td>BMETE90MM90 KR</td>
</tr>
<tr>
<td>Optional Courses</td>
<td>10 credits</td>
</tr>
<tr>
<td>Preparatory Course for Master’s Thesis</td>
<td>BMETE90MM98 K</td>
</tr>
<tr>
<td>Mathematical Modelling Seminar 2</td>
<td>BMETE95MM02 K</td>
</tr>
<tr>
<td>Individual Projects 2</td>
<td>BMETE92MM02 K</td>
</tr>
<tr>
<td>Master’s Thesis</td>
<td>BMETE90MM99 K</td>
</tr>
</tbody>
</table>

Exam type:
- v = exam,
- f = midterm exam,
- a = signature

Subject type:
- K = obligatory,
- KV = elective,
- V = optional
Curriculum of MSc in Applied Mathematics
Specialization in Financial Mathematics

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture / Practice / Laboratory / Exam type / Credit</th>
<th>Name</th>
<th>Code</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical Foundations from BSc Courses</td>
<td>20 credits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary Professional Courses</td>
<td>30 credits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commutative Algebra and Algebraic Geometry</td>
<td>BMETE91MM01 KV</td>
<td>3/1/0/v/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential Geometry and Topology</td>
<td>BMETE94MM00 KV</td>
<td>3/1/0/v/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamical Systems</td>
<td>BMETE93MM02 KV</td>
<td>3/1/0/v/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fourier Analysis and Function Series</td>
<td>BMETE92MM00 KV</td>
<td>3/1/0/v/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General and Algebraic Combinatorics</td>
<td>BMEVISZM020 KV</td>
<td>3/1/0/v/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global Optimization</td>
<td>BMETE93MM00 KV</td>
<td>3/1/0/v/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear Programming</td>
<td>BMETE91MM01 K</td>
<td>3/1/0/v/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematical Statistics and Information Theory</td>
<td>BMETE95MM05 K</td>
<td>3/1/0/v/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partial Differential Equations</td>
<td>BMETE93MM03 K</td>
<td>3/1/0/v/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Representation Theory</td>
<td>BMETE91MM02 KV</td>
<td>3/1/0/v/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stochastic Analysis and its Applications</td>
<td>BMETE95MM04 K</td>
<td>3/1/0/v/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theoretical Computer Science</td>
<td>BMETE91MM00 KV</td>
<td>3/1/0/v/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Courses of Specialization</td>
<td>30 credits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysis of Economic Time Series</td>
<td>BMEGT30M400 K</td>
<td>2/0/0/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biostatistics</td>
<td>BMETE95MM25 K</td>
<td>0/2/0/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Programming in Financial Mathematics</td>
<td>BMETE93MM14 K</td>
<td>2/0/0/v/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extreme Value Theory</td>
<td>BMETE95MM16 K</td>
<td>2/0/0/v/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Financial Processes</td>
<td>BMETE95MM14 K</td>
<td>2/0/0/v/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insurance Mathematics 2</td>
<td>BMETE95MM17 K</td>
<td>2/0/0/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Markov Processes and Martingales</td>
<td>BMETE95MM07 K</td>
<td>3/1/0/v/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multivariate Statistics with Applications in Economy</td>
<td>BMETE95MM18 K</td>
<td>2/0/0/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonparametric Statistics</td>
<td>BMETE95MM20 K</td>
<td>2/0/0/v/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statistical Program Packages 2</td>
<td>BMETE95MM09 K</td>
<td>0/0/2/v/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stochastic Differential Equations</td>
<td>BMETE95MM08 K</td>
<td>3/1/0/v/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Series Analysis with Applications in Finance</td>
<td>BMETE95MM26 K</td>
<td>2/0/0/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Courses</td>
<td>40 credits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematical Modelling Seminar 1</td>
<td>BMETE95MM01 K</td>
<td>2/0/0/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individual Projects 1</td>
<td>BMETE92MM01 K</td>
<td>0/0/4/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report</td>
<td>BMETE90MM90 KR</td>
<td>0/0/0/a/0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optional Courses</td>
<td>10 credits</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparatory Course for Master’s Thesis</td>
<td>BMETE90MM98 K</td>
<td>0/2/0/5</td>
<td>Report</td>
<td></td>
</tr>
<tr>
<td>Mathematical Modelling Seminar 2</td>
<td>BMETE95MM02 K</td>
<td>2/0/0/1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individual Projects 2</td>
<td>BMETE92MM02 K</td>
<td>0/0/4/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Master’s Thesis</td>
<td>BMETE99MM99 K</td>
<td>0/0/0/a/15</td>
<td>PrepMThesis</td>
<td></td>
</tr>
</tbody>
</table>

Exam type: v = exam, f = midterm exam, a = signature
Subject type: K = obligatory, KV = elective, V = optional
Curriculum of MSc in Applied Mathematics
Specialization in Stochastics

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture / Practice / Laboratory / Exam type / Credit</th>
<th>Name</th>
<th>Code</th>
<th>Type</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Requisities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical Foundations from BSc Courses</td>
<td>20 credits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary Professional Courses</td>
<td>30 credits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commutative Algebra and Algebraic Geometry</td>
<td>BMETE91MM01</td>
<td>KV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3/1/0/5</td>
<td></td>
</tr>
<tr>
<td>Differential Geometry and Topology</td>
<td>BMETE94MM00</td>
<td>KV</td>
<td></td>
<td></td>
<td>3/1/0/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamical Systems</td>
<td>BMETE93MM02</td>
<td>KV</td>
<td></td>
<td></td>
<td>3/1/0/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fourier Analysis and Function Series</td>
<td>BMETE92MM00</td>
<td>KV</td>
<td></td>
<td></td>
<td>3/1/0/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General and Algebraic Combinatorics</td>
<td>BMEVISZM020</td>
<td>KV</td>
<td></td>
<td></td>
<td>3/1/0/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global Optimization</td>
<td>BMETE93MM00</td>
<td>KV</td>
<td></td>
<td></td>
<td>3/1/0/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear Programming</td>
<td>BMETE93MM01</td>
<td>KV</td>
<td></td>
<td></td>
<td>3/1/0/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematical Statistics and Information Theory</td>
<td>BMETE95MM05</td>
<td>K</td>
<td></td>
<td></td>
<td>3/1/0/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partial Differential Equations 2</td>
<td>BMETE93MM03</td>
<td>K</td>
<td></td>
<td></td>
<td>3/1/0/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Representation Theory</td>
<td>BMETE91MM02</td>
<td>KV</td>
<td></td>
<td></td>
<td>3/1/0/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stochastic Analysis and its Applications</td>
<td>BMETE95MM04</td>
<td>K</td>
<td></td>
<td></td>
<td>3/1/0/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theoretical Computer Science</td>
<td>BMETE91MM00</td>
<td>KV</td>
<td></td>
<td></td>
<td>3/1/0/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Courses of Specialization</td>
<td>30 credits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Theory of Dynamical Systems</td>
<td>BMETE95MM12</td>
<td>KV</td>
<td></td>
<td></td>
<td>2/0/0/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Financial Processes</td>
<td>BMETE95MM14</td>
<td>K</td>
<td></td>
<td></td>
<td>2/0/0/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limit- and Large Deviation Theorems of Probability Theory</td>
<td>BMETE95MM10</td>
<td>K</td>
<td></td>
<td></td>
<td>3/1/0/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Markov Processes and Martingales</td>
<td>BMETE95MM07</td>
<td>K</td>
<td></td>
<td></td>
<td>3/1/0/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multivariate Statistics</td>
<td>BMETE95MM15</td>
<td>K</td>
<td></td>
<td></td>
<td>3/1/0/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonparametric Statistics</td>
<td>BMETE95MM20</td>
<td>K</td>
<td></td>
<td></td>
<td>2/0/0/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statistical Program Packages 2</td>
<td>BMETE95MM09</td>
<td>K</td>
<td></td>
<td></td>
<td>0/0/2/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stochastic Differential Equations</td>
<td>BMETE95MM08</td>
<td>K</td>
<td></td>
<td></td>
<td>3/1/0/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stochastic Models</td>
<td>BMETE95MM11</td>
<td>KV</td>
<td></td>
<td></td>
<td>2/0/0/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Courses</td>
<td>40 credits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematical Modelling Seminar 1</td>
<td>BMETE95MM01</td>
<td>K</td>
<td></td>
<td></td>
<td>2/0/0/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individual Projects 1</td>
<td>BMETE92MM01</td>
<td>K</td>
<td></td>
<td></td>
<td>0/0/4/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report</td>
<td>BMETE90MM90</td>
<td>KR</td>
<td></td>
<td></td>
<td>0/0/0/0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optional Courses</td>
<td>10 credits</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparatory Course for Master’s Thesis</td>
<td>BMETE90MM98</td>
<td>K</td>
<td></td>
<td></td>
<td>0/2/0/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematical Modelling Seminar 2</td>
<td>BMETE95MM02</td>
<td>K</td>
<td></td>
<td></td>
<td>2/0/0/1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individual Projects 2</td>
<td>BMETE92MM02</td>
<td>K</td>
<td></td>
<td></td>
<td>0/0/4/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Master’s Thesis</td>
<td>BMETE90MM99</td>
<td>K</td>
<td></td>
<td></td>
<td>0/8/0/15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exam type: v = exam, f = midterm exam, a = signature
Subject type: K = obligatory, KV = elective, V = optional
Curriculum of MSc in Computational and Cognitive Neuroscience

<table>
<thead>
<tr>
<th>Subject Name</th>
<th>Code</th>
<th>Type</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Requisities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical foundations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Informatics</td>
<td>BMETE92MC19</td>
<td>K</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Introduction to Cognitive Science</td>
<td>BMETE47MC01</td>
<td>K</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Introduction to Experimental Psychology</td>
<td>BMETE47MC25</td>
<td>K</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Mathematics</td>
<td>BMETE92MC15</td>
<td>K</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Neurobiology 1 – Foundations and Neurobiology of Perception</td>
<td>BMETE47MC22</td>
<td>K</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Psycholinguistics</td>
<td>BMETE47MC36</td>
<td>K</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Statistics and Methodology</td>
<td>BMETE92MC20</td>
<td>K</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Advanced Courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cognition and Emotion</td>
<td>BMETE47MC26</td>
<td>K</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Cognitive Psychology Laboratory</td>
<td>BMETE47MC27</td>
<td>K</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Epistemology</td>
<td>BMEGT41M410</td>
<td>KV</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Evolutionary Psychology</td>
<td>BMETE47MC07</td>
<td>K</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Intelligent Systems</td>
<td>BMEVITMM031</td>
<td>KV</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>Informatics</td>
</tr>
<tr>
<td>Neurobiology 2 – Sensory and Motor Processes</td>
<td>BMETE47MC23</td>
<td>K</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>Neurobiology 1</td>
</tr>
<tr>
<td>Neuropsychology</td>
<td>BMETE47MC06</td>
<td>K</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>Neurobiology 1</td>
</tr>
<tr>
<td>Philosophy of Science</td>
<td>BMEGT41M411</td>
<td>KV</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Specialized Courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brain in Trouble</td>
<td>BMETE47MC34</td>
<td>K</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Cognitive Informatics in Human Vision</td>
<td>BMEVITMM032</td>
<td>KV</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>Informatics</td>
</tr>
<tr>
<td>Cognitive Neuropsychiatry</td>
<td>BMETE47MC30</td>
<td>K</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>Neurobiology</td>
</tr>
<tr>
<td>Historical Reconstruction of Scientific Thinking</td>
<td>BMEGT41M413</td>
<td>KV</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Introduction to Cultural Studies</td>
<td>BMET43M410</td>
<td>KV</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Introduction to Matlab Programming</td>
<td>BMETE92MC14</td>
<td>K</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>Informatics</td>
</tr>
<tr>
<td>Memory and the Psychology of Learning</td>
<td>BMETE47MC29</td>
<td>K</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>Int.Exp.Sci.</td>
</tr>
<tr>
<td>Neurobiology 3 – Higher Cognitive Functions</td>
<td>BMETE47MC24</td>
<td>K</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>Neurobiology 2</td>
</tr>
<tr>
<td>Philosophy of Mind</td>
<td>BMETE47MC18</td>
<td>KV</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Pragmatics and Cognitive Linguistics</td>
<td>BMETE47MC15</td>
<td>KV</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>Psycho-linguistics</td>
</tr>
<tr>
<td>Reading Seminar in Psycholinguistics 1</td>
<td>BMETE47MC31</td>
<td>K</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>Psycho-linguistics</td>
</tr>
<tr>
<td>Reading Seminar in Psycholinguistics 2</td>
<td>BMETE47MC32</td>
<td>K</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>Psycho-linguistics</td>
</tr>
<tr>
<td>Reading Seminar in Psycholinguistics 3</td>
<td>BMETE47MC33</td>
<td>K</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>Psycho-linguistics</td>
</tr>
<tr>
<td>Social Cognition</td>
<td>BMETE47MC28</td>
<td>K</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Speech Communication</td>
<td>BMEVITMM62</td>
<td>KV</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Theory of Science</td>
<td>BMEGT41M412</td>
<td>KV</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optional courses</td>
<td></td>
<td>V</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Preparatory Course for Master’s Thesis</td>
<td>BMETE47MC35</td>
<td>K</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Research Seminar</td>
<td>BMETE47MC20</td>
<td>K</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Master’s Thesis</td>
<td>BMETE47MC21</td>
<td>K</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

Exam type: v = exam, f = midterm exam, a = signature
Subject type: K = obligatory, KV = elective, V = optional
Description of BSc Subjects in Physics

MATHEMATICS

Mathematical Methods in Physics 1

Dr. Tamás Tasnádi

The course gives an introduction to mathematical tools used in the Experimental Physics 1-2 courses without giving precise proofs. The aim of the course is to develop the calculation facility of the students and enable them to use mathematical methods in physical problems. One fourth of the lectures and the practices are devoted to practice the subject on specific problems. The course is jointly held by the Institutes of Mathematics and Physics. Themes: Complex numbers, basic laws of algebra, algebraic, trigonometric, and exponential forms of complex numbers, complex operations. Vectors, matrices: operations (scalar, cross, diadic product), determinant and its properties, trace, Levi-Civita symbol, linear system of equations, inverse matrix, Gaussian elimination, eigenvalue, eigenvector, characteristic polynomial. Differentiation: definition, basic rules, higher order derivatives, Taylor series, partial derivative, total derivative, Young’s theorem, differentiation of vectors, divergence, gradient, curl, nabla symbol, Jacobian matrix. Integration: definitions, definite, indefinite, partial, u-substitution, multiple integral, path, surface, volume integrals, Gaussian, Stokes theorem.

Mathematical Methods in Physics 2

Dr. Tamás Tasnádi

The course gives an introduction to mathematical tools used in the Experimental Physics 1-2 courses without giving precise proofs. The aim of the course is to develop the calculation facility of the students and enable them to use mathematical methods in physical problems. One fourth of the lectures and the practices are devoted to practice the subject on specific problems. The course is jointly held by the Institutes of Mathematics and Physics. Themes: Curvilinear coordinates, covariant, contravariant operations, transformation, cylindrical, spherical coordinates, derivatives. Linear algebra: basis, dual vector space, symmetric operators, similarity transformations, invariants, matrix polynomials, matrix functions, spectral decomposition. Complex analysis: poles, residue theorem, contour integral. Distributions: Dirac delta, operations. Fourier transformation: applications: Fourier-series, convolution, Green’s theorem.

Analysis for Physicists

Dr. Tibor Illés

Rational and real numbers, sets, convergence of real series. Functions of one variable: continuity, properties of continuous functions, monotonicity, properties of monotonic functions, differentiability, significant limits, elemental functions and their inverse functions, intermediate value theorems, properties of differentiable functions, function analysis. Taylor polynomial, definite and indefinite integral, technique of integration, usage of integration, improper integral, simple differential equations. Infinite series. Convergence criteria.

Multivariate Analysis for Physicists

Dr. Tibor Illés

Probability Theory for Physicists

Dr. Péter Bálint

FUNDAMENTAL PHYSICS

Experimental Physics 1

Dr. Péter Vankó

Basic concepts of kinematics, kinematics of points. Force, Newton’s laws, momentum. Gravity, the equivalence prin-
Experimental Physics 2

BMETE13AF03 – 4/4/0/fv/8

Dr. Pál Koppa

Experimental Physics 3

BMETE15AF21 – 3/2/0/fv/5

Dr. Orsolya Újsághy

Experimental Nuclear Physics

BMETE80AF18 – 2/1/0/v/3

Dr. Rita Dóczi

Composition of the atomic nucleus, nuclear force, mass defect and stability of the nucleus, binding energy. The liquid drop model and the semi-empirical mass formula. Two ways to release nuclear energy. Types of radioactive decay, exponential decay law, radioactive decay chains; alpha, beta and gamma decay. Types of nuclear reactions, conservation of quantities with nuclear reactions, direct nuclear reactions and compound nucleus reactions. Microscopic and macroscopic cross sections. Types and properties of the neutron induced nuclear reactions. The energy dependence of the cross section of neutron induced nuclear reactions. Neutron slowing-down. Fast neutrons, epithermal neutrons, thermal neutrons. Interaction of radiation with matter: interaction of charged particles (alpha and beta radiation), neutron and gamma radiation with matter, the exponential attenuation of the radiation. Basic properties of the nuclear radiation detectors: The igh energy detectors, scintillation detectors, semiconductor detectors, theroluminescent dosimeters, solid-state nuclear track detectors. Neutron detectors. Nuclear fission. Fission products, fission neutrons; the energy balance of the fission process. Chain reaction with neutrons, time-behaviour of the chain reaction, effective neutron multiplication factor, the basic constituents of a thermal-neutron reactor. Nuclear reactions capable to produce fissile material. Types of particle accelerators.

ADVANCED PHYSICS

Mechanics 1

BMETE15AF23 – 2/2/0/fv/5

Dr. Gergely Zarándy

Quantum Mechanics 1
BMETE15AF27 – 2/2/0/fv/5
Dr. László Szunyogh

Electrodynamics 1
BMETE15AF25 – 2/2/0/fv/5
Dr. Gábor Tákacs

Statistical Physics 1
BMETE15AF29 – 2/2/0/fv/5
Dr. Gergely Zaránd

Introduction to Solid State Physics
BMETE11AF05 – 2/2/0/fv/4
Dr. István Kézmári

Applied Solid State Physics
BMETE11AF11 – 2/0/0/v/2
Dr. Szabolcs Csonka
Band structure of metals and semiconductors, electron transport, electron scattering mechanisms, 2 dimensional electron gases, Si technology (FET, SSD memory), semiconductor heterostructure (semiconductor laser, MEMT), nanoelectronics, single electron transistor. Magnetic materials, origin of magnetic momentum and interaction between moments, magnetic structures. Magnetism of metals, spin polarized bands, spintronics devices (spin valve, MRAM). Spin transistor, magnetic semiconductors.

Optics
BMETE12AF35 – 2/2/0/v/4
Dr. Gábor Erdei

LABORATORY WORK, MEASUREMENT TECHNIQUES, ELECTRONICS

Introductory Laboratory Exercises

BMETE11AF27 – 0/0/2/f/2

Sándor Bordács

Basic error analysis. Evaluation and plotting of the experimental data, linear regression, non-linear curve fitting. Simple experiments to practice data evaluation and error analysis. Basic functions of multimeters, oscilloscopes, function generators and data acquisition cards are introduced to the students. Students must attend to 6 laboratory practices each of them is 4 hour long.

Laboratory Exercises in Physics 1

BMETE11AF28 – 0/0/3/f/4

Dr. Péter Vankó

Laboratory Exercises in Physics 2

BMETE11AF29 – 0/0/4/f/5

Dr. Péter Vankó

Basic instruments, procedures and methods. Evaluation of measurements, error calculation, protocol writing. Measurement of complex electrical, mechanical, optical and thermal quantities. Advanced data collection. Advanced use of power supplies, sound generators, multimeters, oscilloscopes, etc. Measurements related to Experimental physics 1, 2 and 3.

Electronics

BMETE12AF27 – 2/0/0/f/2

Dr. Gábor Kiss

The primary aim is to teach the operation and planning of the basic circuits used in the experimental and applied physics. This subject is based on the themes of Experimental physics 2 and Practice in experimental physics 2, giving knowledge in the physical bases of linear electronics (Maxwell-equations, Kirchhoff-laws, resistance, capacity, inductivity, complex impedance, transient phenomena, RLC circuits). The detailed physics of semiconductor devices is taught later (Theoretical solid state physics, Applied solid state physics). In Electronics only the phenomenological models of semiconductor devices are treated. Thematics: Brush-up the physical bases of linear electronics. Linear electronic elements: ideal resistor, capacitor, inductor, distributed (parazite) parameters, volt and amper meters, voltage and current sources. Basic AC and DC circuits: bridges, voltage dividers, filter circuits, transformers. Introduction into the calculational methods of complex linear AC and DC circuits. Analysis methods of non-linear circuits. Small-signal models, notion of distortion. Characteristics of diodes, bipolar and fiel-effect transistors, small and large signal models of the devices. Active analogue circuits, bi-polar and field effect transistor amplifiers, rectifiers. Feedback and its application. Parameters of operation amplifiers and their applications. Inverting and non-inverting amplifiers, summarizing, differentiating and integrating circuits, schmitt-trigger circuit, oscillators. Special complex circuits (power supplies, regulators), protection of circuits.

Laboratory of Electronics

BMETE80AF03 – 0/0/2/f/2

Dr. Gábor Póó

This is a practical course, where students build basics electronics circuits like Smitt trigger, Miller effect and electronics of coincidence measurement. We pay attention mainly to electronics applied in nuclear measuring chains including signal formation differential and integral electronics, analog digital converters, transfer function signal/noise ratio, dead time, and jitter. Students get practice in electronics oscilloscopes, measuring automatically amplitude and spectrum. Using LABVIEW they learn how to build a spectrum analyzer in one day, measuring propagating perturbations to estimate velocity of natural convention in the water. All practice should be reported in form of well formatted measuring report including error estimation as well.

Measurement Techniques

BMETE11AF30 – 2/0/0/v/2

Dr. András Halbritter

Advanced Laboratory Exercises in Physics 1

BMETE11AF32 – 0/0/4/f/5

Dr. Ferenc Fülöp

Advanced level experiments related to various topics of the
Computer programming, numerical methods (10 credits)

Programming

Dr. László Pohl

Synopsys of the subject, requirements, algorithm, data, language, programming languages, why the C# specification, design, coding, testing, documenting, algorithm choice questions in connection with GCD (trial and error, prime factors, Euclidean formula), elements of algorithms: sequence, branching, cycles, n! calculation: algorithm selection, parts, data structure, narrative description of the algorithm, algorithm by block diagram, encoding; a small analysis: mandatory elements of a C program, the frame, the main function, return 0; the purpose and significance of indenting, scanf for reading integer values, printf for writing integer values. Storage units: variables, constants, functions; mandatory declaration / definition, syntax / semantics: Syntax diagram, syntax of an integer value, Basic syntax rules: free writing mode (white spaces), a != A, #preproc, /* comment */, regular identifiers; predefined types, why we use int and double, constant int definition in dec, oct, hex surface physics, vacuum techniques. Advanced optical phenomena and nuclear physics; investigates the ionising radiations and radiation detectors; acquirement of modern measurement techniques.

Advanced Laboratory Exercises in Physics 3

Dr. Ferenc Ujhelyi

Advanced laboratory exercises related to the modern physics and the research fields of BME TTK mainly in the following fields: Semiconductor physics, material science, surface physics, vacuum techniques. Advanced optical measurements. Nuclear measurements. Modern measurement methods.

Numerical Computations for Physicists

Dr. Sándor Szabó

In this course we use the Matlab and Maple softwares to solve linear algebraic, one- and multivariable analysis problems. We consider the following topics. Linear Algebra: Solution of linear systems, Eigenvalues, eigenvectors, Column space, row space, rank, Gram-Schmidt orthogonalisation process, Inverse, determinant. Analysis: Solution of nonlinear systems by numerical methods, calculating integrals by quadratures, multiple integrals. Interpolation, limit, differentiation, determining potential function. Differential equations: Numerical (Euler, Runge-Kutta methods) and symbolic methods. Matlab: Programming in Matlab, Vectors, matrices, functions, graphics, Maple: Basic commands, LinearAlgebra, DEtools, VectorCalculus and plots packages.
Chemistry

Dr. Mihály Kállay
General chemistry (introduction, basic chemical terms, notation of mole, reaction equations, stoichiometry, basics of chemical calculations, types of concentration). Basics of inorganic chemistry (constitution of atoms and molecules, types of chemical bonds, types of chemical formulae, the periodic table, states of matter, properties of the elements, most important inorganic compounds). Basics of chemical thermodynamics (basic terms, internal energy, work, heat, the first law of thermodynamics, enthalpy, heat of reaction, standard enthalpies, Hess’s law, second law of thermodynamics, entropy, free energy, free enthalpy, standard free enthalpies, free enthalpy of the ideal gas, chemical potential, mixtures, activities, equilibria, thermodynamic equilibrium constant). Chemical kinetics (notion of reaction rate, molecularity of reactions and reaction order, first and second order reactions, stepwise reactions, the effect of temperature on the reaction rate). Electrochemistry (properties of electrolytes, electrolytic dissociation of water and the concept of pH, galvanic cells, Nerst equation, types of electrodes, electrochemical power sources, zinc coal cells, batteries, fuel cells, electrolysis). Organic chemistry (hydrocarbons, aromatic compounds, halogen derivatives, alcohols, amines, ethers, aldehydes, ketones, carbonic acids, anhydrides, esters, carbohydrates, proteins, nucleic acids – definition, nomenclature, structure, most important reactions). Colloid chemistry (basics of colloid chemistry, dispersions, macromolecular and micellar solutions, gels, stability of colloids, preparation of colloids, examination methods of colloid systems). Materials science (basics of polymer chemistry, types of polymers, structure of polymers, polymerisation reactions, most important plastics, composites, ceramics, liquid crystals). Chemical examination and analytic methods (spectroscopic methods, classical analytic procedures, chromatography, electroanalysis).

Radiation Protection and its Regulatory Issues

Dr. Csilla Pesznay

Management and Business Economics

Dr. János Kövesi
The course introduces the essentials of management as they apply within the contemporary work environment and gives a conceptual understanding of the role of management in the decision making process. Particular attention is paid to management theories, corporate finance, leadership, teamwork, quality management, management of technology, economics calculation and operations management. For problem formulation, both the managerial interpretation and the mathematical techniques are applied. Principles of management: Organizational resources. The enterprise as an organization. Functions of managerial processes. Managerial roles. Role of an engineer. Team work, communication in an organization. Lifecycle management and its managerial aspects. Costing: costing, cost effectiveness, traditional costing systems. Break even analyses, standard costing, activity based costing. Quality management: Principles of quality management, the brief history of quality management systems. Overview of quality assurance systems based on ISO 9001:2000. Overview of quality assurance systems based on Total Quality Management System.

ADVANCED MATHEMATICS

Modern Mathematical Methods in Physics

Dr. Péter Lévay

Introduction to Experimental Data Handling

Dr. Dániel Péter Kis

Functional Analysis for Physicists

BMETE92AF02 – 4/2/0/v/6

Dr. Dénes Petz

Group Theory for Physicists

BMETE11AF35 – 2/2/0/v/4

Dr. Titusz Fehér

The aim of the course is to introduce the principles of group theory to physics students: we learn how the symmetries of a system can be used to describe it, and how the symmetries of nature manifest themselves in laws of physics. We apply the concepts of group and representation theory to practical problems. Theory: Symmetries in nature and physics. Definition and basic properties of groups. Some special groups. Homomorphism, isomorphism. Subgroups, cosets, Lagrange’s theorem. Normal subgroup, quotient group, first isomorphism theorem. Conjugate, conjugacy classes, centralizer. Group action, orbit, stabilizer. Representations and their properties, equivalent representations, irreducible representations. Schur’s lemma. Character of representations, properties of characters, character tables. Direct sum of representations and their reduction. Product representations. Lie groups, infinitesimal generators, Lie algebras. Topological properties, universal covering group. Rotation group and its representations. Lorentz group and other matrix groups. Calculation: Description of normal modes, crystals, and quantum mechanical wave functions using group theory. Selection rules.

ADVANCED PHYSICS

Mechanics 2

BMETE15AF32 – 2/2/0/fv/5

Dr. Gergely Zaránď

Quantum Mechanics 2

BMETE15AF36 – 2/2/0/fv/5

Dr. László Szunyogh

This course conveys advanced knowledge on Quantum Mechanics according to the following topics: The WKB approach, quasi-classical quantization. Scattering theory, scattering amplitude and cross section, Green functions, Lippmann-Schwinger equation, Born series, method of partial waves. Motion in electromagnetic field, Aharonov-Bohm effect, Landau levels. Time evolution and pictures in Quantum Mechanics (Schrödinger, Heisenberg and Dirac pictures). Adiabatic motion and Berry phase. Relativistic Quantum Mechanics, Klein-Gordon equation, Dirac equation, continuity equation, Lorentz invariance, spin and total angular momentum. Free electron and positron. Non-relativistic limit, spin-orbit interaction.

Electrodynamics 2

BMETE15AF34 – 2/2/0/fv/5

Dr. Gábor Takács

Fluid Mechanics

BMGEÁTAF11 – 2/0/0/f/3

Dr. Gergely Kristóf

Properties of Fluids, Newton’s law of viscosity. Cavitation, description of fluid flow, force fields. Characterisation and visualisation of flows, free (irrotational) vortex, continuity theorem, hydrostatics. Fluid acceleration, Euler-equation, Bernoulli-equation, total, static, and dynamic pressure. Basic examples for the Bernoulli-equation: flow rate measurement using a Venturi-tube, measurement of pressure, ve-

Classical and Quantum Chaos

Dr. Imre Varga

Hamiltonian formalism, integrability in general, examples in physics for chaotic behavior in case of continuous and discrete dynamics; Continuous, non-autonomous differential equations; Anharmomic, dissipative oscillator; Mappings, Poincare-mapping; Periodically excited systems; Billiards. For some of these cases: application of techniques introduced for the analysis of chaos: Lyapunov exponent, invariant measures; Frobenius-Perron equation. Stability analysis; Bifurcations, attractors, strange attractors; Kolmogorov-entropy; KAM-theorem; Chaotic dynamics and its traces in quantum mechanics. Semiclassical quantization, WKB method; Gutzwiller-trace formula; Spectral statistics, Loschmidt-echo.

Theory of Relativity

Dr. Péter Pál Lévay

COMPUTER PROGRAMMING

Computer Controlled Measurements

Dr. András Halbritter

The participants gain experience in computer controlled measurements and in the programming of scientific instruments and data acquisition system. To this end the following topics are covered: communication with the instruments via serial, GPIB, and USB ports. Programming of data acquisition cards. Programming of complex measurement control platforms, plotting and saving the data, programming of timelines, in situ data analysis. The course consists of 4 hour long computer laboratory exercises every second week. In the first part of the semester fundamental programming skills are obtained through simple example programs. In the second part the participants individually program complex measurement control and data analysis platforms, like nonlinear curve fitting by Monte Carlo method, full computer control of a digital multimeter, digital oscilloscope program using a data acquisition card.

The Fundamentals and Applications of Finite Element Modeling

Dr. Szabolcs Beleznai

Summary of theoretical and practical aspects of the finite element method to solve practical physical problems. The most important subjects are: numerical solution of the most common physical problems described by ordinary and partial differential equations: Poisson-Laplace equation, Heat transfer, Particle convection, Diffusion, Helmholtz equation, Wave equation, Eigenvalue problems, Complex problems.

Computer Solution of Technical and Physical Problems

Dr. Gábor Varga

In the frame of this course several areas of technical and physical problems (one and many particle problems, Poisson equation, fluid flow, sheet deformation, heat transport, wave equation, Schrödinger equation) are investigated. Investigated problems can be described by ordinary or partial differential equations. For every problem computer program is written. During the computer implementation not only the physical models but the needed numerical methods are analysed. MATLAB program language is applied as a programming tool. The course is complemented at beginning of the semester with optional MATLAB training.

Monte Carlo Methods

Dr. Sándor Fehér

Optics

Spectroscopy

BMETE12AF28 – 2/0/0/v/2

Dr. Sándor Lenk

Fundamentals and Applications of Materials Science

BMETE12AF25 – 2/0/0/v/2

Dr. Ferenc Réti

The aim of the course is to familiarize students with the fundamental physical properties that govern biological (living) systems having higher complexity to inert physical systems and illustrate the physical modelling of such biological systems. Unlike medical courses, the present one aims at providing extensive biological information to the topics of physics with the prerequisite that students are familiar with the basics of classical and modern physics. Detailed topics: Biological basics of biophysics (criteria of life, the cell, descriptive genetics). Material structure and its relation to function (bond types, water, molecular basics of the genetic code). Interaction of biological systems with radiation (light absorption in macromolecules, biological impact of optical and X-ray radiations, radiobiology). Thermodynamics of biological processes (thermal homeostasis, irreversible thermodynamics, cellf, respiratory and photosynthesis). Metabolism and transport (transport phenomena, drift, diffusion and osmosis). Biological membranes (ion transport, electric phenomena, stimulated processes, propagation of stimulus, the patch-clamp measuring technique). Biophysics of sensory organs (receptors): vision and hearing. Collective phenomena (traffic-like motion, ASEP models, fundamental mechanisms of molecular motors).

Microscopy

BMETE12AF09 – 2/0/0/f/2

Dr. Pál Maák

Microtechnology and Nanotechnology

BMETE12AF08 – 2/0/0/f/2

Dr. Gábor Kiss

NUCLEAR TECHNOLOGY

Nuclear Physics

BMET80MD00 – 3/1/0/v/5
Dr. Csaba Sükösd

Nuclear Measurement Techniques

BMET80MD01 – 1/1/0/v/3
Dr. Imre Szalóki

Nuclear Safety

BMET80MD05 – 2/0/0/v/2
Dr. Szabolcs Csírus

Radioactive Waste Management

BMET80MD07 – 2/0/0/v/2
Dr. Péter Zagyvai

Plasma Physics

BMET80MD02 – 3/1/0/v/4
Dr. Gergő Pokol
Description of BSc Subjects in Mathematics

Basics of Mathematics
BMETE91AM35 – 2/0/0/v/3
Dr. Miklós Ferenczi

Calculus 1
BMETE92AM36 – 6/2/0/v/9
Dr. Miklós Horváth

Introduction to Algebra 1
BMETE91AM36 – 6/2/0/v/9
Dr. Erzsébet Horváth

Introduction to Geometry
BMETE94AM17 – 2/0/0/v/3
Dr. Jenő Szirmai
Euclid’s Axioms and Postulates, Hilbert’s axioms, points, straight lines, planes, distances, angles etc. Euclidean plane: Geometric transformations, synthetically. Vector geometry, linearly dependent, linearly independent vectors, scalar and cross product, Cartesian coordinate system, Lagrange-Jacobi identities. Coordinate geometry, analytic description of planes and straight lines, distances, angles, etc. Euclidean space: Geometric transformations (congruences), analytically. Homogeneous coordinates, uniform treatment of geometric transformations. Affinities, similarities. Spherical geometry: geodesic curves, angles, angle-sum formula for spherical triangles, spherical trigonometry. Definition of polyhedra, Euler theorem. Special polyhedra: convex, regular polyhedra, Archimedean solids, Catalan solids etc. Cauchy’s rigidity theorem, and other interesting polyhedra.

Informatics 1
BMETE91AM42 – 1/0/2/0/4
Dr. Ferenc Wettl
The aim of the course is to study the basic notions of information technology. Basics of hardware (CPU, memory, mass storage,...), the hardware environment of the Institute. Basics of operating systems: program, process, file, folder, file system of Linux and Windows (bash, mc, Windows Total Commander). Graphic user interface, terminal user interface, bash language. Internet, network, IP address, wifi, Internet security. Data on machine: number representation, character encodings. Computer algebra, symbolic calculation (Sage, Mathematica,...). Variable, recursion instead of iterative programming, deepening the secondary school function concept (factorial, Fibonacci sequence, Euclidean algorithm, exponentiation, quick exponentiation...). Programming paradigms in computer algebra languages. HTML, the markup language concept, homepage. CSS, separation of the content and presentation. Editing mathematical text: TeX, LaTeX, mathematics on the web. Presentation of math (beamer). Basic concepts of graphic file formats, graphics in mathematical text (TikZ).
Calculus 2
BMETE92AM37 – 6/2/0/v/8
Dr. József Pítrik

Introduction to Algebra 2
BMETE91AM37 – 6/2/0/v/8
Dr. Alex Kúronya

Combinatorics and Graph Theory 1
BMETE94AM18 – 4/0/0/v/6
Dr. Ákos G. Horváth
Axiomatic methods, introduction to the absolute geometry, hyperbolic, spherical and projective planes. n-dimensional Euclidean geometry, convex polytopes, regular polytopes. n-dimensional classification of surfaces of second-order.

Informatics 2
BMETE91AM43 – 1/0/2/f/4
Dr. Ferenc Wettl

Physics 1 for Mathematicians
BMETE13AM16 – 2/0/0/f/2
Dr. László Udvardi

Analysis 1

BMETE92AM38 – 4/1/0/v/7

Dr. Attila Andai

Algebra 1

BMETE91AM38 – 4/1/0/v/7

Dr. Ágoston Kűronya

Probability Theory 1

BMETE95AM29 – 2/2/0/v/6

Dr. Péter Bálint

Programming Exercises for Probability Theory

BMETE91AM46 – 0/0/0/f/1

Dr. Ferenc Wettl

The aim of the course is to maintain the students’ programming skills through programming problems associated with the topics of Probability Theory course helping the understanding of the basic concepts of probability simulations of random events at the same time.

Differential Equations 1

BMETE93AM15 – 2/2/0/v/6

Dr. Katalin Nagy

Informatics 3

Dr. Alex Kürönya

Mathematical Statistics 1

Dr. Marianna Bolla

Analysis 2

Dr. Attila Andai

Differential Geometry 1

Dr. Krisztián Kóđós

Definition of curve, parametrisation, reparametrisation, length and arclength, invariance of length under isometries, tangent vector, curvature, Fox-Milnor’s theorem, normal, vector, signed curvature and turning angle, total curvature and convexity, the four vertex theorem, isoperimetric inequality, Frenet-Serret frame, torsion, fundamental theorem of curves. Definition of a regular embedded surface, Gaussian curvature, principal curvatures, intrinsic geometry, Theorema Egregium, Christoffel symbols, PMC equations, fundamental theorem of surfaces, covariant derivative, Lie bracket, Riemann curvature tensor, geodesic curvature, geodesics, Gauss-Bonnet theorem.

Operations Research

Dr. Marianna Eisenberg-Nagy

Theory of Algorithms

Dr. Katalin Friedl

Pattern matching: naïve algorithm, the fingerprinting method of Rabin and Karp, solution by finite automata. Deterministic and non-deterministic finite automata and their equivalence. Regular expressions, regular languages, and their connections to finite automata. Finite automaton as lexical analyser. Context free grammars. Parse tree, left and right derivation. Ambiguous words, grammars, languages. The importance of unambiguous grammars for algorithms. Pushdown automaton. Connection between pushdown automata and context free grammars, how to get a PDA from a CFG grammar. The main task of a parser. The general automaton: Turing machine. Church-Turing thesis. The classes P, NP, coNP, their relations. Karp reduction and the notion of NP completeness. Theorem of Cook and Levin. 3SAT, 3COLOR are NP complete languages. Further NP complete languages: MAXSTABLE, HAM-CYCLE, HAMPATH, TSP, 3DH, SUBSETSUM, PARTITION, KNPACK, SUBGRAPHISO. The problem of GRAPHSIO. Linear and integer programming. LP is in P (without proof), IP is in NP. LP and IP as algorithmic tools, translation of combinatorial problems to integer programming. Another tool: branch and bound. Dynamical programming (example: knapsack, longest common substring). The objective in approximation algorithms. Bin packing has fast and good approximations (FF, FFD, theorem of Ibarra and Kim). For the TSP even the approximation s hard in general but there is efficient 2-approximation in the euclidean case. Comparison based sorting: bubble sort, insertion sort, merge sort, quick sort.
Lower bound for the number of comparisons. Other sorting methods: counting sort, bin sort, radix sort. Linear and binary search. The binary search is optimal in the number of comparisons. Notion of search tree, their properties and analysis. Red-black tree as a balanced search tree. The 2-3 tree, and its generalization, the B tree. Comparisons of the different data structures.

Programming Exercises for Theory of Algorithms

BMETE91AM47 – 0/0/0/f/1

Dr. Ferenc Wettl

The aim of the course is to maintain the students’ programming skills through programming problems associated with the topics of Algorithm Theory course helping the understanding of the basic concepts of algorithms.

Algebra 2

BMETE91AM39 – 4/0/0/v/4

Dr. Erzsébet Lukács

Field extensions, construction and uniqueness of simple algebraic extensions, finite and algebraic extensions. Normal extensions, splitting field, separable extension, finite fields, Wedderburn’s theorem, Galois group, irreducibility of the cyclotomic polynomials, Galois groups of radical extensions, Galois correspondence, fundamental theorem of Galois theory. Applications of Galois theory: fundamental theorem of algebra, ruler and compass constructions, solvability of equations by radicals, Abel–Ruffini theorem. Existence and uniqueness of algebraic closure, transcendental extensions, transcendence of e, Gelfand-Schneider theorem. Review of the basic concepts of number theory, Euler \(\phi\) function. Linear congruences and systems of congruences, binomial congruences of higher degree, discrete logarithm, congruences of prime power moduli. Quadratic congruences, Legendre and Jacobi symbol, quadratic reciprocity. Prime numbers: Euclid’s theorem, gaps between primes, Chebyshev’s theorem, harmonic series of primes, Dirichlet’s theorem for \((nk + 1)\). Arithmetic functions: \(\sigma(n)\), \(\phi(n)\). Multiplicativity, convolution, Möbius function, the Möbius inversion formula. Prime number theorem, magnitude of the \(n\)th prime, prime tests, Rabin–Miller test, RSA function. Diophantine equations: linear diophantine equations, Pythagorean triples, Fermat’s two squares theorem, Gaussian integers.

Optimization Models

BMETE93AM16 – 2/0/2/f/4

Dr. Boglárka Gazdag-Tóth

Stochastic Processes

BMETE95AM34 – 4/0/0/v/4

Dr. Károly Simon

Creating Mathematical Models

BMETE95AM12 – 0/2/0/f/2

Dr. Domokos Szász

The aim of the seminar to present case studies on results, methods and problems from applied mathematics for promoting the spreading of knowledge and culture of applied mathematics. The development of the connections and cooperation of students and professors of the Mathematical Institute, on the one hand, and of personal, researchers of other departments of the university or of other firms, interested in the applications of mathematics. The speakers talk about problems arising in their work. They are either applied mathematicians or non-mathematicians, during whose work the mathematical problems arise. An additional aim of this course to make it possible for interested students to get involved in the works presented for also promoting their long-range carrier by building contacts that can lead for finding appropriate jobs after finishing the university.

Micro- and Macroeconomics

BMETGT3A410 – 3/0/0/f/4

Dr. Katalin Petró

Applied Numerical Methods with Matlab

BMETE92AMxx – 2/0/2/f/4

Dr. Tamás Tasnádi

Usage of MATLAB (all discussed numerical methods will be introduced and tested in MATLAB). The discussed topics are: error calculation, direct and iterative solution of linear systems of equations: Gauss elimination, Gauss transformare factorizations of matrices, conditionality of linear systems of equations, Jacobi, Seidel and SOR iteration; convergence of the iteration, error estimation, optimization type methods for solving linear systems of equations, estimation of the eigenvalue, power method for the eigenvalue, eigenvector problem of matrices, inverse power method, transforming matrices to special forms, Jacobi method for determining eigenvalues and eigenvectors, QR method for determining eigenvalues, simple interpolation with polynomials, Hermite interpolation, interpolation with third degree spline, approximation according to least squares with polynomials and trigonometric polynomials, trigonometric interpolation, basics of fast Fourier transform, numerical integration,
Newton-Cotes formula and its usage, Gaussian quadrature, solution of non linear systems of equations, roots of polynomials, numerical solution to the initial value problems of ordinary differential equations, basic terms of one step methods, Runge-Kutta methods, stability, convergence and error estimation of one step methods, multistep methods.

Differential Geometry 2

BMET94AM20 – 3/1/0/v/4

Dr. Szilárd Szabó

BSc Thesis Project

BMET90AM47 – 0/0/10/1/10

Dr. Miklós Horváth

This course is for graduate students to prepare their graduate thesis in which they prove that they can use the acquired knowledge independently and creatively.

Tools of Modern Probability Theory

BMET95AM33 – 4/0/0/v/4

Dr. Imre Tóth

Measure Theory

BMET92AM42 – 4/0/0/v/4

Dr. Miklós Horváth

Individual Research Project 1, 2

BMET90AM48, 49 – 0/0/0/f/2

Dr. Miklós Horváth

Under the guidance of a chosen tutor, the student works on understanding a paper or a book chapter about contemporary mathematics. The goal is to get familiar with basic methods and abilities of research like exact understanding of mathematics in English, use of libraries and of the net etc. At the end of the semester the student makes a written English summary in a few pages and gives a short presentation in a seminar talk.

Partial Differential Equations

BMET92AM45 – 2/2/0/v/4

Dr. János Karátson

Convex Geometry

BMET94AM22 – 2/2/0/v/4

Dr. Zsolt Lángi

Introduction: affine and convex sets, affine dependence, independence, affine and convex combinations, affine hull, isolation theorem, characterization of closed, convex sets as the intersection of closed half spaces. Convex hull, theorems of Radon, Helly and Carathéodory, their applications. Linear functionals and their connection with hyperplanes, Minkowski sum, separation of convex sets with hyperplanes, supporting hyperplanes, faces of a convex body, extremal and exposed points, theorems of Krein-Milman and Straszewicz. Indicator function, algebras of closed/compact convex sets, valuations, Euler characteristic and...

Combinatorics and Graph Theory 2

Dr. Tamás Fleiner

Description of MSc Subjects in Physics

BASIC COURSES

Fundamentals of Photonics

BMETE12MF49 – 2/1/0v/4

Dr. Attila Barócsi

Nuclear Physics

BMETE80MF00 – 3/0/0v/4

Dr. Dániel Péter Kis

This course describes the main chapters of the low-energy nuclear physics building on the experimental nuclear physics knowledge gained while earning a BSc degree in Physics. The following topics are discussed: measurement and systematics of the most important parameters of nuclei in ground state, nuclear models, nuclear forces, nuclear reactions, theorethical description of nuclear decay modes, nuclear fission, nuclear fusion and its use for energy production, nuclear cosmology, nuclear astrophysics.

Nanotechnology and Materials Science

BMETE11MF36 – 3/0/0v/4

Dr. Szabolcs Csonka

This course gives an introduction to state-of-the-art fabrication and measurement techniques of nanotechnology and material science by explaining examples of recent research results. Main topics: Concept of nanotechnology, characteristic length scales, and surprising behaviors observed at the nanoscale. Imaging tools for nano: scanning probe microscopy, electron microscopy. Fabrication of nanostructures by top-down approaches: lithography, layer deposition and special nanofabrication techniques. Fabrication of nanostructures with bottom-up methods: self-assembly. Silicon technology, semiconductor heterostructures, 2D electron gases. Important applications from the field of optics and electronics. New concepts in electronics: spintronics, memristors, molecular electronics and quantum electronics. Mapping the structure of matter by scattering experiments. Optical spectroscopy methods to study electric and vibrational properties of matter. Surface characterization methods. Modern classes of matter (carbon nanostuctures, multifunctional materials, 2D crystals, etc.) and their applications.

Particle Physics

BMETE15MF43 – 2/1/0v/4

Dr. Gábor Takács

Statistical Physics 2

BMETE15MF44 – 2/1/0v/4

Dr. Gergely Zaránd

Computer Simulation in Physics

BMETE15MF45 – 2/1/0f/4

Dr. János Török

The course is based on the statistical physics and programming skills learned in the BSc programme gives insight into basic simulation techniques of physics. Main topics: Monte Carlo method (pseudo random numbers, importance sampling, Metropolis algorithm, boundary conditions, ensembles, averages, characteristic time), Phase transitions (finite-size scaling, critical slowing down, optimizations, quantum spin chain), Discrete models (percolation, lattice models, noise, instability), Schrödinger equation (Lánzsos method), molecular dynamics (interactions, solvers, event driven MD, instabilities). Networks and applications (clustering, page rank). Algorithmically defined models (self-organized criticality, game models, Nash-equilibrium).
Investments
BMETG35M004 – 2/0/0/f/2
Dr. Mihály Ormos

Applied Numerical Methods with MATLAB
BMETE92MFxx – 4/0/2/f/6
Dr. Róbert Horváth
Usage of MATLAB (all discussed numerical methods will be introduced and tested in MATLAB). The discussed topics are: error calculation, direct and iterative solution of linear systems of equations; Gauss elimination, Gauss transforms, factorizations of matrices, conditionality of linear systems of equations, Jacobi, Siedel and SOR iteration; convergence of the iteration, error estimation, optimization type methods for solving linear systems of equations, estimation of the eigenvalue, power method for the eigenvalue, eigenvector problem of matrices, inverse power method, transforming matrices to special forms, Jacobi method for determining eigenvalues and eigenvectors, QR method for determining eigenvalues, simple interpolation with polynomials, Hermite interpolation, interpolation with third degree spline, approximation according to least squares with polynomials and trigonometric polynomials, trigonometric interpolation, basis of fast Fourier transform, numerical integration, Newton-Cotes formula and its usage, Gaussian quadrature, solution of non linear systems of equations, roots of polynomials, numerical solution to the initial value problems of ordinary differential equations, basic terms of one step methods, Runge-Kutta methods, stability, convergence and error estimation of one step methods, multi step methods.

ADVANCED GENERAL COURSES

Group Theory for Physicists
BMETE11AF40 – 2/2/0/v/5
Dr. Titusz Fehér
The aim of the course is to introduce the principles of group theory to physics students: we learn how the symmetries of a system can be used to describe it, and how the symmetries of nature manifest themselves in laws of physics. We apply the concepts of group and representation theory to practical problems. Theory: Symmetries in nature and physics. Definition and basic properties of groups. Some special groups. Homomorphism, isomorphism. Subgroups, cosets, Lagrange’s theorem. Normal subgroup, quotient group, first isomorphism theorem. Conjugate, conjugacy classes, centralizer. Group action, orbit, stabilizer. Representations and their properties, equivalent representations, irreducible representations. Schur’s lemma. Character of representations, properties of characters, character tables. Direct sum of representations and their reduction. Product representations. Lie groups, infinitesimal generators, Lie algebras. Topological properties, universal covering group. Rotation group and its representations. Lorentz group and other matrix groups. Calculation: Description of normal modes, crystals, and quantum mechanical wave functions using group theory. Selection rules.

Electrodynamics 2
BMETE15AF34, 42 – 2/2/0/fv/5
Dr. Gábor Takács

Quantum Mechanics 2
BMETE15AF36, 43 – 2/2/0/fv/5
Dr. László Szunyogh
This course conveys advanced knowledge on Quantum Mechanics according to the following topics: The WKB approach, quasi-classical quantization. Scattering theory, scattering amplitude and cross section, Green functions, Lippmann-Schwinger equation, Born series, method of partial waves. Motion in electromagnetic field, Aharonov-Bohm effect, Landau levels. Time evolution and pictures in Quantum Mechanics (Schrödinger, Heisenberg and Dirac pictures). Adiabatic motion and Berry phase. Relativistic Quantum Mechanics, Klein-Gordon equation, Dirac equation, continuity equation, Lorentz invariance, spin and total angular momentum. Free electron and positron. Non-relativistic limit, spin-orbit interaction.

Mechanics 2
BMETE15AF32, 44 – 2/2/0/fv/5
Dr. Gergely Zaránd

Computer Solution of Technical and Physical Problems
BMETE11AF41 – 0/0/2/f/3
Dr. Gábor Varga
In the frame of this subject basic models of different technical and physical applications are investigated (among others: one and many body problems, Poisson equation, flow dynamics, plate deformation, heat conductivity, wave
Statistical Field Theory

Dr. Gábor Takács

The Physics of One-Dimensional Systems

Dr. Gergely Zaránd

This course gives a basic introduction to the physics and theoretical description of interacting one-dimensional electron and spin systems. One-dimensional systems display basic phenomena such as charge- and spin density wave formation, antiferromagnetism and exotic superconductivity, and are fundamental test-grounds for solid state physicists, since powerful field theoretical approaches can be used for them. Moreover, they are often realized in physical systems such as carbon nanotubes, quasi one-dimensional systems, or edge states. The course assumes the knowledge of basic Green’s function methods (Many body physics I), and is organized along the following topics: one-dimensional systems in nature (the Hubbard model, instabilities within the random phase approximation, spin and charge density waves, mapping to the Heisenberg model), basic properties of spin chains (Haldene’s conjecture, spin coherent states, spin liquids, the basics of Bethe Ansatz), the continuum limit (renormalization group and the Tomonaga-Luttinger model), bosonization (spin-charge separation, the Luttinger liquid phase), effects of disorder.

SOLID STATE PHYSICS

Modern Solid State Physics

Dr. Attila Virosztek

This course describes the behavior of interacting many body systems (mainly electron systems) building on solid state physics and statistical physics knowledge gained while earning a BSc degree in Physics. The following topics are discussed: identical particles, second quantization, interacting electron systems in Bloch and Wannier representation, itinerant ferromagnetism, linear response theory, susceptibility of metals, spin density waves, Bose liquid.

Group Theory in Solid State Research

Dr. György Kriza

Point groups, fundamental theorems on finite groups, representations, character tables. Optical spectroscopy: selection rules, direct product representations, factor group. Electronic transitions: crystal field theory, SO(3) and SU(2) groups,

Superconductivity

Dr. György Kriza

Theory of Magnetism

Dr. Attila Virozsek

Magnetic phenomena are considered as electron correlation effects. The Hubbard model is used to interpret the Mott metal-insulator transition. A variational theory is given which allows the understanding of heavy fermion behavior. The antiferromagnetic Heisenberg model is introduced as the effective hamiltonian of the large-U Hubbard model at half filling. Other kinetic exchange processes, including ring exchange with application to the magnetism of solid He3, are discussed. A detailed treatment of the two-site Coulomb processes allows the introduction of direct exchange. The survey of various mean field theories of magnetic order begins with the Stoner theory. Weak itinerant ferromagnets like ZrZn2 and MnSi are discussed in some detail.

Theory of Magnetism 2

Dr. Attila Virozsek

The basic concepts and results from the first part of the course are assumed to be familiar. The variety of magnetic ordering phenomena is surveyed, the conditions of ordering, and the nature of the excited states over ordered ground states are discussed in various theoretical frameworks. The concept of the quantum critical point is used for rare earth systems with non-fermi-liquid behavior. Localized-spin order and spin wave theory is described both for ferromagnets and antiferromagnets. A detailed discussion of quantum fluctuations in the ground state is given, including recent results on the possibility of spin liquid ground states. A particular kind of magnetic cooperative behavior is shown to give rise to the integer and the fractional quantum Hall effect.

Magnetic Resonance

Dr. Titusz Fehér

The course discusses one of the most important investigation methods in physics, chemistry and medical sciences. It is based on the electrodynamics and quantum mechanics studies required for the BSc degree. Topics include experimental methods of electron and nuclear magnetic resonance, Bloch equations, dipole-dipole interaction, motional narrowing, crystal fields and fine structure, hyperfine splitting, chemical shift, magnetic resonance in metals, superconductors and magnetically ordered materials.

Theoretical Nanophysics

Dr. Gergely Zaránd

Mesoscopic and nanoscale systems represent one of the most intensely studied fields in modern solid state physics: by means of lithographic methods one can engineer semiconducting, metallic and superconducting devices, in which conduction electrons move coherently and quantum mechanics is at work, and can contact and manipulate molecules or nanoscale grains, and couple them to micresonators. The goal of this course is to survey theoretical tools that can be used to describe the physics of these nanoscale devices. The course assumes a solid knowledge of quantum mechanics, solid state physics and statistical physics, and focuses on the following topics: description of small grains (Coulomb interaction, coherence, single particle levels), basics of random matrix theory (level repulsion, universality classes), Coulomb blockade and spectroscopy (master equations, co-tunneling, Kondo effect), conductance and noise spectrum of point contacts, nanotubes and edge states, molecular transport, superconducting grains, Josephson-junctions and quantum bits, quantum spin manipulation. Solving problem sets in an integral part of this course. (Students are offered regular consultation.)

Electronic Structure of Solid Matter

Dr. László Szunyogh

Building on the quantum mechanics and solid state physics studies within the Physics BSc program, this course aims to discuss modern theories and methods for the electronic structure of solid matter. The following topics will be outlined: Foundations of the static density functional theory. Variational and pseudopotential methods. Ab initio methods for correlated systems (LDA+U, self-interaction correction, DMFT). Point group symmetry in electronic states. Spin-orbit coupling and time-reversal symmetry. Surface states, the Bychkov-Rashba effect. Green’s function technique within the tight-binding approximation. Alloy theory, the coherent potential approximation. Ab initio theory of metallic (itinerant) magnetism, the Stoner model. The method of disordered local moments.

Foundations of Density Functional Theory

Dr. János Pipek

Topological Insulators
BMETE11MF34 – 2/0/0/v/3
Dr. András Pályi
An important finding of the previous decade is that even the (non-interacting) band theory of electrons in solids can provide fundamental novelties. Topological insulators are crystalline band-insulator materials accommodating conducting – occasionally perfectly conducting – surface states. In this lecture series we use simple models to introduce the topological invariants that are important in band theory, and provide theoretical tools to calculate those, and show how topology protects the surface states from certain perturbations. We provide insight into the general theory of topological insulators, and review a few related experimental arrangements and results. Topics: One-dimensional crystals with chiral symmetry: the Su-Schrieffer-Heeger model. Adiabatic dynamics in quantum mechanics, Berry phase, Chern number. Adiabatic charge pumping in a one-dimensional crystal. Quantum Anomalous Hall effect: the Qi-Wu-Zhang model. Two-dimensional time-reversal-invariant topological insulators: the Bernevig-Hughes-Zhang model. Quantized conductance of two-dimensional topological insulators.

Topological Insulators 2
BMETE11MF35 – 2/0/0/v/3
Dr. András Pályi
Based on the material covered in “Topological insulators”, in this course we discuss how to store and process quantum information in topological superconductors. Regarding single-particle excitations, superconductors can be regarded as band insulators in the Bogoliubov-de Gennes formalism. Under certain conditions, a superconductor can be topologically nontrivial. Such one- and two-dimensional materials can support topologically protected zero-energy bound states, called Majorana fermions. We review the theoretical and experimental status of these bound states, and the basis of utilizing those for storing and processing quantum information. We also give an outlook on strongly correlated, topologically ordered models. Topics: Superconductivity and the Bogoliubov-de Gennes formalism. Topological superconductivity in one dimension: Kitaev wire, Majorana modes and bulk-boundary correspondence. Electronic transport in topological superconductors: tunneling spectroscopy and the Josephson effect. Experimental realization of topological superconductors. Topological superconductivity in two dimensions: p+ip superconductors, bound states in vortices. Majorana modes and topological quantum information processing. Topological order: Kitaev’s toric code and honeycomb models.

STASTICAL PHYSICS
Evolutionary Game Theory
BMETE15MF11 – 2/0/0/v/3
Dr. László Szunyogh
This course gives an introduction to the multi-agent evolutionary games building on statistical physics knowledge gained while earning a BSc degree in Physics. The following topics are discussed: Concepts of traditional game theory (strategy, payoff, matrix game, Nash equilibrium, etc.); Evolutionary games with population dynamics; Evolutionary games on lattices and graphs; Generalization of dynamical pair approximation. Many interesting phenomena are described by considering the repeated multiagent Prisoner’s Dilemma and Rock-Scissors-Paper games for different connectivity structures.

Phase Transitions and Criticality
BMETE15MF48 – 2/1/0/v/4
Dr. Gergely Zaránd

Complex Networks
BMETE15MF38 – 2/0/0/v/3
Dr. János Kertész

The Physics of Disordered Systems
BMETE15MF53 – 2/1/0/v/4
Dr. Gergely Zaránd

Random Matrix Theory and Its Physical Applications
BMETE15MF10 – 2/0/0/v/3
Dr. Imre Varga
Random matrix theory provides an insight of how one can achieve information relatively simply about systems having very complex behavior. The subject based on the knowledge acquired in quantum mechanics and statistical physics together with some knowledge of probability theory provides an overview of random matrix theory. The Dyson
ensembles are defined with their numerous characteristics, e.g. the spacing distribution, the two-level correlation function and other quantities derived thereof. Then the thermodynamic model of levels is obtained together with several models of transition problems using level dynamics. Among the physical applications the universality classes are identified in relation to classically integrable and chaotic systems. The problem of decoherence is studied as well. Then the universal conductance fluctuations in quasi-one-dimensional disordered conductors are investigated. Other models are investigated: the disorder driven Anderson transition and the random interaction model of quantum dot conductance in the Coulomb-blockade regime. We use random matrix models to investigate chirality in two-dimensional and Dirac systems and the normal-superconductor interface. The remaining time we cover problems that do not belong to strictly physical systems: EEG signal analysis, covariance in the stock share price fluctuations, mass transport fluctuations, etc.

Classical and Quantum Chaos

BMETE15AF45 – 2/0/0/v/3

Dr. Imre Varga

Hamiltonian formalism, integrability in general, examples in physics for chaotic behavior in case of continuous and discrete dynamics; Continuous, non-autonomous differential equations; Anharmonic, dissipative oscillator; Mappings, Poincare-mapping; Periodically excited systems; Billiards. For some of these cases: application of techniques introduced for the analysis of chaos: Lyapunov exponent, invariant measures; Frobenius-Perron equation. Stability analysis; Bifurcations, attractors, strange attractors; Kolmogorov-entropy; KAM-theorem; Chaotic dynamics and its traces in quantum mechanics. Semi-classical quantization, WKB method; Gutzwiller-trace formula; Spectral statistics, Loschmidt-echo.

NANOTECHNOLOGY AND MATERIALS SCIENCE

Fundamentals of Nanophysics

BMETE11MF37 – 3/0/0/v/4

Dr. András Hallbritter

The building blocks of nowadays electronic devices have already reached a few tens on nanometers sizes, and further miniaturization requires the introduction of novel technologies. At such small length-scales the coherent behavior and the interaction of electrons, together with the atomic granularity of matter induce several striking phenomena, that are not observed at the macroscopic scale. The course gives an introduction to a broad set of nanoscale phenomena following the topics bellow: Characteristic length-scales in nanophysics. Development of semiconductor industry, heterostructures, two dimensional electron gas systems, nanoscale fabrication techniques. Diffusive and ballistic nanowires, quantum wires, Landauer description of mesoscopic transport, conductance quantization. Interference phenomena in nanocircuits, decoherence. Integer and fractional quantized Hall effect. Noise as the signal: shot noise, spin injection, nonlocal measurements. Nanoelectromechanical systems.

Material Science Laboratory

BMETE12MF50 – 0/0/3/f/4

Dr. Olga Homokiné Krafcsik

The goal of the course is an introduction - in the field of materials science - to material characterization measurement methods and technologies on theoretical level and in practice also. On each laboratories a measurement method, technical conditions of sample preparation and measurement, evaluation and informations obtained from measurements will be introduced. Practical measurement examples and technological informations obtained from the measurement will be demonstrated. Int he lab, as far as possible, the students perform the sub-tasks independently. In some cases the measurements will be connected to a technological lab by a ”miniproject”, in this way students can get an overview from sample preparation to measurement evaluation in a specialization field of materials science. The chosen methods will be demonstrated by experts in Budapest, on the latest available equipments. Planned measurements: vibrational spectroscopies, infrared spectroscopy, Raman spectroscopy, Electron diffraction, X-ray diffraction, NMR, ESR, Measurements on Semiconductor structures.

Selected Topics of the Modern Materials Science

BMETE12MF52 – 2/0/0/v/3

Dr. Ferenc Réti

Physics of Semiconductors 1

BMETE11MF26 – 2/0/0/v/3

Dr. Miklós Csontos

This course describes the behavior of modern semiconductor physics, – mostly those properties (electrical and optical), which provides understanding of present day electronics –, building on solid state physics and statistical physics knowledge gained while earning a BSc degree in Physics. Emphasize is paid to those new phenomena, which are unique of semiconductor materials and/or structures and provides much help for our understanding of condensed
materials. The following topics are discussed: crystal structure and bonding, electron states, effective mass approximation, localized states, statistics of semiconductors, transport: phenomenological and microscopic, magnetic and high frequency transport, quantum hall Effect, thermal properties, inhomogeneous semiconductors, p-n junction, MOS structures, transport instabilities and Gunn effect, semiconductor lasers and light emitting diodes, principles of different applications: solar cell, optical communication, modern experimental techniques: deep level spectroscopy, lifetime measurements.

Chemistry in Nanotechnology

BMETE11MF38 – 2/0/0/v/3

Dr. István Lagzi

Nanotechnology Laboratory

BMETE12MF54 – 0/0/3/f/4

Dr. Olga Homokíné Krafcsik

The goal of the course is an introduction - in the field of nanotechnology - to material characterization measurement methods and technologies on theoretical level and in practice also. On each laboratories a measurement method, technical conditions of sample preparation and measurement, evaluation and informations obtained from measurements will be introduced. Practical measurement examples and technological informations obtained from the measurement will be demonstrated. In the lab, as far as possible, the students perform the sub-tasks independently. In some cases the measurements will be connected to a technological lab by a "miniproject", in this way students can get an overview from sample preparation to measurement evaluation in a specialization field of nanotechnology. A significant part of the nanotechnology lab is a multi-day project, under which the students will produce nanocircuits by modern lithographic methods. The chosen methods will be demonstrated by experts in Budapest, on the latest available equipments. Planned measurements: Showing cleanroom facilities, Basic structure production by photolithography, preparation of a field-effect transistor from nanowires by electronbeam lithography, evaporation of contacts in UHV system, Characterization of the completed circuit by electron microscopy, AFM and electric transport measurements, Locating exfoliated graphene on Si substrate, optical microscope measurements, layernumber investigation by Raman-microscope, graphene sample investigation by AFM and STM, Investigations by TEM.

Optical Spectroscopy in Materials Science

BMETE11MF39 – 3/0/0/v/4

Dr. Sándor Bordács

Propagation of electromagnetic waves in isotropic medium, interfaces, complex response functions, Kubo’s formula, Kramers-Kronig relations; spectroscopy of atoms, X-ray emission and absorption spectroscopy; inter- and intraband excitations, excitons, plasmons, color centers; rotational and vibrational transitions, Fourier transform infrared and Raman spectroscopy; time-resolved spectroscopy, pump-probe experiments; near-field microscopy.

OPTICS AND PHOTONICS

Physics of Semiconductors I

BMETE11MF26 – 2/0/0/v/3

Dr. Miklós Csontos

This course describes the behaviour of modern semiconductor physics, – mostly those properties (electrical and optical), which provides understanding of present day electronics, – building on solid state physics and statistical physics knowledge gained while earning a BSc degree in Physics. Emphasize is paid to those new phenomena, which are unique of semiconductor materials and/or structures and provides much help for our understanding of condensed materials. The following topics are discussed: crystal structure and bonding, electron states, effective mass approximation, localized states, statistics of semiconductors, transport: phenomenological and microscopic, magnetic and high frequency transport, quantum hall Effect, thermal properties, inhomogeneous semiconductors, p-n junction, MOS structures, transport instabilities and Gunn effect, semiconductor lasers and light emitting diodes, principles of different applications: solar cell, optical communication, modern experimental techniques: deep level spectroscopy, lifetime measurements.

Light Sources

BMETE12MF14 – 2/0/0/v/3

Dr. László Kocsányi

The goal of the course is to introduce physicist-, electrical engineer- and chemical engineer students to the science and technology of light sources. The thematic includes the overview of the usual photometric parameters, the survey of the development of lamps from incandescent light sources, through discharge lamps to LEDs, the basic physical processes, and the comparison of the advantages, disadvantages and possible fields of application of different lamp types.

Physical Optics

BMETE12MF37 – 4/0/0/v/5

Dr. Pál Koppa

The objective of the course is the introduction and application of light propagation models for the description of different optical phenomena. Based on the classical electromagnetic wave theory, we discuss the propagation in homogeneous isotropic and anisotropic media, thin films, dielectric waveguides, geometrical optical description and Fresnel-Kirchhoff diffraction theory. The acquired knowledge will be applied for problem solving in the areas of e.g. soliton propagation, slow light or photonic crystals.
Spectroscopy and Structure of Matter

Dr. Péter Richter
This course organizes the knowledge obtained during the BSc training (electrodynamics of media, quantum mechanics, group theory, statistical physics, optics, optical measurement techniques) regarding the use of spectroscopy in materials characterization and structure elucidation. The methods covered are mainly optical techniques (infrared and visible/Ud absorption and reflectance spectroscopy, Raman scattering, ellipsometry, optical rotation dispersion, circular dichroism) but other topics, as excitations of inner shells (X-ray and photoelectron spectroscopy, Mössbauer spectroscopy) will also be mentioned. The purpose of the course is to prepare the students to decide which spectroscopic methods to use for a given specific problem, and to be able to basically interpret the results.

Laser Physics

Dr. Pál Maák
Fenomenological, semiclassical (interaction of quantized material with classical electromagnetic field) and quantum theory (interaction of quantized material and field) of continuous wave and pulsed laser oscillation. Properties of laser light. Laser types and laser applications. Problem solving on practices helps to develop a better understanding of the theory.

Optical Metrology

Dr. János Kornis
The goal is to present an overview of the methods of optical metrology and present the most recent techniques and results. Topics: Elements of the optical measuring systems. Light sources, detectors, recording materials. Measurement of optical properties of the optical elements. Measurement of angle, length, and flatness by classical methods and using coherent optics. Heterodyne and phase stepping interferometry. Holography and speckle metrology. Digital holography. Application of optical signal processing in speckle metrology. Photo elasticity. Optical fiber sensors. Color measurement. optical metrology based on detection in different colors.

Physical Foundations of Optical Communications

Dr. Zsolt Papp
This course gives an introduction to physics of optical communication building on knowledge of optics gained on a BSc course program in Physics. The following topics will be treated: optics tray propagation in lenslike media, dispersion, etc.), laser physics (fiber-laser, optical fiber-amplifiers, DFB laser, etc.), nonlinear optics (nonlinear effects, phase-modulation, soliton, etc.), optical fibers – wave guiders (optical fibers, modes, dispersion, photonic crystals, couplers, etc.).

NUCLEAR TECHNOLOGY

Reactor Physics

Dr. Máté Szieberth
Description of the neutron gas, Boltzmann transport equation, boundary conditions, concept of criticality, diffusion theory, one-group and multigroup approximations, time dependence, kinetics equation, neutron spectrum, slowing down theory, thermalization, fuel lattices, reactivity coefficients, burnup, numerical methods.

Thermal Hydraulics

Dr. Attila Aszódi
Technological realization of heat removal for different reactor types; distribution of heat source; differential equation of heat conduction, solutions; hydraulics system of equations, heat transfer, boiling, instabilities, DNBR; two-phase flow; temperature distribution of fuel, clad and coolant; reactor safety, design base accidents, thermal limits, thermal-hydraulics codes.

Reactor Technology and Operation

Dr. Szabolcs Czifrus

Fusion Devices

Dr. Gergő Pokol
The course starts with two introductory lectures: the first one summarizes the physics basis needed to understand the criteria for fusion energy producing devices, while the second reviews the main elements of fusion technology and their functions. This is followed by two lectures of introduction to stellarator technology through the German stellarator program, and three lectures dealing with the past, present and future of tokamaks. Spherical tokamaks are discussed in a separate lecture followed by lectures introducing the most important milestones of German, US and Japanese fusion programs. The last lecture presents the rapidly expanding Far-East fusion programs in the context of the history of superconducting tokamaks.

Nuclear Safety

Dr. Szabolcs Czifrus
Introduction into nuclear safety – basic terms, safety functions, physical barriers, defence in depth. Plant states, design basis of a nuclear plant. Safety of nuclear plants – safety systems, comparison of different reactor types. Deterministic analysis – methods, postulated initiating events. Probabilistic analysis – methods. Level 1, 2, and 3 PSA. Application of PSA in nuclear design. Design basis accidents – course of

Nuclear Techniques Laboratory
BMTE80MD03 – 0/0/4/f/5
Dr. Rita Dóczi

MEDICAL PHYSICS

Nuclear Medicine
BMTE80MF97 – 2/0/1/v/3
Dr. Szabolcs Czifrus

Medical Imaging
BMTE80MF91 – 3/1/0/v/4
Dr Dávid Légrády

The lecture focuses on the mathematics of medical imaging with special attention to tomography. We discuss basic image property descriptors (contrast, noise, resolution, Modulation Transfer Function); basic image processing (smoothing, sharpening, contrast enhancement) and some more advanced techniques (image recognition with morphology); practical recap of Fourier transform; the 2D Radon transform and some inversion options (direct Fourier reconstruction, Filtered Backprojection, Inversion with Riesz-potentials); the 3D Radon and X-ray transforms and their inversion. Direct algebraic image reconstruction (ART, pseudoinverse) and stochastic methods like ML-EM will also be treated for both Emission and Transmission tomography.

Magnetic Resonance and Clinical Applications
BMTE80MF90 – 2/0/0/v/2
Dr. Dávid Légrády

The lecture focusses on the principles of Magnetic Resonance Imaging. Discussed topics are the mathematics of spin physics, spin physics, classical approach and the Bloch-equations, NMR spectroscopy. Imaging principles, basic pulse sequences (Spin-Echo, Free Induction Decay), and principles of 3D imaging, 3D imaging artefacts. Hardware elements of MRI scanners, practical, clinical applications, safety measures. The oral lectures are complemented by visits to actual MRI scanners.

Magnetic Resonance and Clinical Applications 2
BMTE80MF75 – 2/0/0/v/3
Dr. Dávid Légrády

Based on the Magnetic Resonance Imaging lecture advanced mathematics and physics applicable at MRI imaging is presented. Advanced methods are shown for higher level artefacts and their corrections and advanced applications. Main topics are chemical shift and corrections (fat, saturation, SPSP techniques, etc.), Fast Echo Planar Imaging and artefacts. Steady-state sequences, details of coherent and incoherent equilibrium. RF and gradient spoiling. Effect of inhomogeneous RF field, slice profile. Signal to Noise ratio in terms of imaging parameters, noise statistics in real and k-space. Parallel imaging: SMASH, GRAPPA, SENSE.
Advanced Linear Algebra

Dr. Erzsébet Horváth

Algebraic and Arithmetical Algorithms

Dr. Attila Nagy

Algebraic Number Theory

Dr. Ferenc Wettl
Quadratic fields and the Pell equation. Algebraic numbers, algebraic integers, number fields, trace and norm. Lattices, orders, integral closure, fractional ideals. Dedekind rings, their basic properties, factorization of ideals, factorization in extensions. Introduction to the theory of valuations, valuations in number fields. The log map of Dirichlet, the unit theorem, Pell equations. Minkowski’s theorem for lattices. (3 credits)

Combinatorial Optimization

Dr. David Szaszler
Basic concepts of matroid theory (independence, bases, circuits, rank). Dual, minors, direct sum, graphic and cographic matroids. Vector matroids, representability, binary and regular matroids, the theorems of Tutte and Seymour. Sum of matroids, the matroid partition algorithm, complexity of the matroid intersection problem. Polymatroid rank function, Lovasz’ theorem on polymatroid matching. Approximation algorithms. Scheduling problems. Applications in engineering: constructing reliable telecommunication networks, disjoint trees, connectivity augmentation, detailed routing of VLSI circuits, solvability of active linear networks, rigidity of bar-and-joint frameworks. (5 credits)
Commutative Algebra and Algebraic Geometry

BMETE91MM01 – 3/1/0/f/5

Dr. Alex Kürönya

Closed algebraic sets and their coordinate rings, morphisms, irreducibility and dimension, Hilbert Nullstellensatz, the correspondence between radical ideals and subvarieties of affine space. Monomial orders, Gröbner bases, Buchberger algorithms, computations in polynomial rings. From regular functions to rational maps, local rings, fundamentals of sheaf theory, ringed spaces. Projective space and its subvarieties, homogeneous coordinate ring, morphisms, the image of a projective variety is closed. Geometric constructions; Segre and Veronese embeddings, Grassmann varieties, projection from a point, blow-up. Dimension of affine and projective varieties, hypersurfaces. Smooth varieties, Zariski tangent space, the Jacobian condition. Hilbert function and Hilbert polynomial, examples, computer experiments. Basic notions of rings and modules, chain conditions, free modules. Finitely generated modules, Gröbner theory of modules, computations, Hilbert syzygy theorem. (5 credits)

Control Systems

BMETE93MM07 – 2/0/0/v/3

Dr. Éva Gyurkovics

Differential Geometry and Topology

BMETE94MM00 – 3/1/0/v/5

Dr. Szilárd Szabó

Smooth manifolds, differential forms, exterior derivative, Lie-derivation. Stokes’ theorem, de Rham cohomology, Mayer–Vietoris exact sequence, Poincaré duality, Riemannian manifolds, Levi–Civitá connection, curvature tensor, spaces of constant curvature. Geodesics, exponential map, geodesic completeness, the Hopf–Rinow theorem, Jacobi fields, the Cartan–Hadamard theorem, Bonnet’s theorem. (5 credits)

Dynamic Programming in Financial Mathematics

BMETE93MM14 – 2/0/0/v/3

Dr. József Fritz

Dynamical Systems

BMETE93MM02 – 3/1/0/v/5

Dr. Károly Simon

Econometrics

BMETE93MM10 – 0/0/2/f/2

Dr. Zsuzett Orlovits

Ergodic Theory and Dynamical Systems

BMETE95AM22 – 2/0/0/f/2

Dr. Domokos Szász

Extreme Value Theory

BMETE95MM16 – 2/0/0/v/3

Dr. Béla Barnabás

Financial Processes

BMETE95MM14 – 2/0/0/f/3

Dr. József Fritz

Fourier Analysis and Function Series

BMETE92MM00 – 3/1/0/v/5

Dr. Miklós Horváth

Fractals and Geometric Measure Theory

BMETE95MM06 – 2/0/0/f/3

Dr. Károly Simon

Game Theory

BMETE93MM09 – 2/0/0/f/3

Dr. Tibor Illes

Introduction into Game theory, especially into its non-cooperative variant. Game theory models such economic, political, military etc. situations where more than one actor optimizes his utility function, whose value also depends on the others’ decisions. By now game theory has become the fundament of economics, which helps modelling monopolly, the design of auctions and other problems. The structure of the lectures is as follows: Non-cooperative game theory (Nash-equilibrium, Bayesian equilibrium). Cooperative game theory: Shapley value. Introduction into economet-
Group Theory

BMETE91MM03 – 3/1/0/f/5
Dr. Erzsébet Horváth

Homological Algebra

BMETE91MM06 – 2/0/0/f/2
Dr. Alex Kúronya
Basic notions: chain complex, exactness, homology modules, homotopy, long exact sequences, functors, 3x3 lemma, 5-lemma, snake lemma, applications. Multilinear algebra over general rings, hom and tensor product, limits, p-adic numbers, profinite groups, adjunct functors. Derived functors, cohomological delta functors, projective and injective modules, resolutions. Tor and Ext: calculation of Tor for Abelian groups, flatness, Tor and Ext for some important rings, Künneth formulas, universal coefficient theorem, homological dimension, rings with small dimension. Cohomology of groups. Shapiro lemma, Hilbert’s Theorem 90 for finite Galois extensions, the first cohomology group, blow up, restriction, transfer. Spectral sequences: definition, boundedness, the Lyndon–Hochschild–Serre spectral sequence, application to calculating group cohomology. (2 credits)

Individual Projects 1, 2

BMETE92MM01, 02 – 0/0/4/f/4
Dr. Márta Lángné Lázi
Within the framework of the subject the student is working on an application oriented research subject based on stochastic mathematics lead by an external supervisor. At the end of each semester the student writes a report about his results which will be also presented by him to the other students in a lecture. The activities to be exercised: literature research, modelling, computer aided problem solving, mathematical problem solving. (4 credits)

Insurance Mathematics 2

BMETE95MM17 – 2/0/0/f/3
Dr. Béla Barabás

Introduction to Economic Dynamics

BMETE93MM08 – 3/1/0/v/5
Dr. András Simonovits
The traditionally static economic theory has recently paid more and more attention to modelling dynamic economics. In comparison with physical and chemical systems, here the role of discrete time approach is much more important. The dynamic optimization is not only a technique but for many economists, it is the only valid approach. A further distinguishing feature that the present is determined not only by the past, by via expectations, by the future as well. In addition of the exposition of the necessary mathematical methods, the course stresses the most important economic models: optimal growth and overlapping generations. (5 credits)

Inverse Scattering Problems

BMETE92MM08 – 2/0/0/v/3
Dr. Miklós Horváth
The seeing process, radar, ultrasound-based medical investigations, geological prospecting of the Earth, investigation of interactions between elementary particles are just a few examples of inverse scattering problems. The course aims to present the mathematical background of such problems, on an introductory level. The main topics include: Time dependent description: wave operator, scattering operator, scattering matrix. Time independent description: scattering amplitude, Lippmann-Schwinger equation, Dirichlet-to-Neumann map, Sylvester-Uhlmann theorem. Acoustic and electromagnetic scattering. One- and three-dimensional quantum scattering problems. The many-body problem. (3 credits)

Limit- and Large Deviation Theorems of Probability Theory

BMETE95MM10 – 3/1/0/v/5
Dr. Bálint Tóth

Linear Programming

BMETE93MM01 – 3/1/0/v/5

Dr. Tibor Illés

Markov Processes and Martingales

BMETE95MM07 – 3/1/0/v/5

Dr. Márton Balázs

tors of jump processes). Markov processes and dynamical systems; ergodic theorems for Markov processes. Markov chains with locally discrete state space: infinitesimal generator on test functions. (5 credits)

Mathematical Chemistry

BMETE92MM09 – 2/0/2/v/5

Dr. János Tóth

Mathematical Modelling Seminar 1, 2

BMETE95MM01, 02 – 2/0/0/f/1

Dr. Domokos Szász

The aim of the seminar to present case studies on results, methods and problems from applied mathematics for promoting, the spreading of knowledge and culture of applied mathematics; the development of the connections and cooperation of students and professors of the Mathematical Institute, on the one hand, and of personal, researchers of other departments of the university or of other firms, interested in the applications of mathematics. The speakers talk about problems arising in their work. They are either applied mathematicians or non-mathematicians, during whose work the mathematical problems arise. An additional aim of this course to make it possible for interested students to get involved in the works presented for also promoting their long-range carrier by building contacts that can lead for finding appropriate jobs after finishing the university. (1 credit)

Mathematical Methods of Classical Mechanics

BMETE93MM12 – 2/0/0/f/2

Dr. Gábor Etesi

Matrix Analysis

BMETE92MM03 – 2/0/0/v/3

Dr. Dénes Petz

Vector spaces and linear operators, Hilbert spaces, orthogonal basis, the matrix of a linear operator, matrix norms, self-adjoint and unitary matrices, localization of eigenvalues and singular values, positive definite matrices, tensor product and Hadamard product, Schur theorem and ap-
applications, functional calculus, derivation, the exponential function, Lie-froiter formula, matrix monotone functions, means of positive matrices, block-matrices, applications to differential equations, matrices with positive entries. (3 credits)

Multivariate Statistics

BMETE95MM15 – 3/0/1/v/5

Dr. Marianna Bolla

Multivariate Statistics with Applications in Economy

BMETE95MM18 – 2/0/0/l/2

Dr. Marianna Bolla

Non-Euclidean Geometry

BMETE94MM03 – 3/1/0/l/5

Dr. Ákos G. Horváth

Nonlinear Hyperbolic Equations

BMETE93MM13 – 2/0/0/v/3

Dr. Katalin Nagy

Nonlinear Programming

BMETE95MM04 – 3/1/0/v/5

Dr. Tibor Illés

Nonparametric Statistics

BMETE95MM20 – 2/0/0/v/3

Dr. László Győrfi

Numerical Methods 2 – Partial Differential Equations

BMETE92MM07 – 2/0/2/v/5

Dr. Róbert Horváth

Operations Research Softwares

BMETE93MM06 – 0/0/2/f/2

Dr. Boglárka Gazdag-Tóth

The aim of this course is twofold. On the one hand it aims to advance the student’s routine in programming by coding the basic algorithms of operations research. On the other hand its goal is to give perfection in the use of operations research software. The standard description of linear programming problems, the MPS data structure, and the most important algebraic modelling languages (GAMS, AMPL, AIMMS). Introduction and usage of the most important software packages in linear, integer, non-linear, and stochastic programming (CPLEX, MINOS, SNOPT, LOQO, LGO).

(2 credits)

Partial Differential Equations 2

BMETE93MM03 – 3/1/0/f/5

Dr. Márton Kiss

Potential Theory

BMETE92MM04 – 2/0/0/f/3

Dr. Ágota G. Horváth

Projective Geometry

BMETE94MM01 – 2/2/0/f/5

Dr. Ákos G. Horváth

Perspectivity in the practice, harmonic division, cross-ratios, the projective scale. The addition and multiplication of points on the base of the Desargues’s theorem. The field defined by the above operations. Structures based on incidences. Projective and affine planes. The Galois-type geometries. The n-dimensional spherical space, projective space and affine space. The classifications of collineations and polarities by the normal form of Jordan. The projective geometrical base of the visualization by computer. The central projection of figures of dimension 3 and 4 and its visualization on the monitor. (5 credits)

Representations of Groups and Algebras

BMETE91MM04 – 3/1/0/f/5

Dr. Erzsébet Lukács

Representation Theory

BMETE91MM02 – 3/1/0/f/5

Dr. Alex Küronya

Statistical Program Packages 2

BMETE95MM09 – 0/0/2/f/2

Dr. Csaba Sándor

The goal of the course is to provide an overview of contemporary computer-based methods of statistics with a review of the necessary theoretical background. 1. How to use the SPSS (Statistical Package for Social Sciences) in program mode. Writing user’s macros. Interpretation of the output data and setting the parameter values accordingly. Definition and English nomenclature of the displayed statistics. 2. Introduction to the S+ and R Program Packages and surveying the novel algorithmic models not available in the SPSS (bootstrap, jackknife, ACE). 3. Practical application. Detailed analysis of a concrete data set in S+. (2 credits)

Statistics and Information Theory

BMETE95MM05 – 3/1/0/f/5

Dr. Marianna Bolla

Stochastic Analysis and Applications

BMETE95MM04 – 3/1/0/v/5

Dr. Károly Simon

Stochastic Differential Equations

BMETE95MM08 – 3/1/0/v/5

Dr. Bálint Tóth

Stochastic Models

BMETE95MM11 – 2/0/0/f/2

Dr. Márton Balázs

Stochastic Programming

BMETE93MM05 – 3/1/0/v/5

Dr. Tamás Szántai

Theoretical Computer Science

BMETE91MM00 – 3/1/0/v/5

Dr. Miklós Ferenczi

Theory of Operators
BMETE92MM05 – 3/1/0/v/5

Dr. Béla Nagy

Wavelet Analysis
BMETE92MM06 – 2/0/0/f/2

Dr. Ky Nguyen Xuan

A wavelet is a kind of mathematical function used to divide a given function into different frequency components and study each component with a resolution that matches its scale. A wavelet transform is the representation of a function by wavelets. The wavelets are scaled and translated copies (known as “daughter wavelets”) of a finite-length or fast-decaying oscillating waveform (known as the “mother wavelet”). Wavelet transforms have advantages over traditional Fourier transforms for representing functions that have discontinuities and sharp peaks, and for accurately deconstructing and reconstructing finite, non-periodic and/or non-stationary signals. In this course the theoretical background of all that and some applications will be presented as well. (2 credits)
Description of MSc Subjects
in Computational and Cognitive Neuroscience

Brain in Trouble
BMETE47MC34 – 2/0/0/f/2
Dr. Mátra Zimmer

Cognition and Emotion
BMETE47MC26 – 2/0/0/f/3
Dr. Gyula Demeter
The primary objective of the course is to present an overview of current research on basic emotional and cognitive processes and underlying brain function. We strive to illustrate the complex relationships between cognition and emotion by presenting specific examples and clinical cases, and by highlighting the underlying brain circuits. We focus also on the major clinical disorders with dysfunctional brain networks. We try to answer questions, such as: Thought or feeling– what is first? or sooner? What are the neural and evolutionary determinants of anxiety? How did our emotions and cognitive abilities evolve? – Introduction and examples. The psychology of emotions. Brain and emotion. Brain and cognition. Interactions of cognition and emotion. The development of cognition and emotion. Sleep and emotional information processing. Cognition and emotion after brain damage. Cognition and emotion in psychiatric disorders. (3 credits)

Cognitive Neuropsychiatry
BMETE47MC30 – 2/0/0/v/3
Dr. Szabolcs Kéri

Cognitive Psychology Laboratory
BMETE47MC20 – 0/0/8/v/9
Dr. Ferenc Kemény
The aim of the course is to keep students up-to-date on the most popular paradigms of human psychological research. To introduce the major methodologies and related softwares. The course covers three major issues: Psycholinguistics, Memory and Sleep research. Students learn computer programming (E-prime), with which they will be able to plan and run experiments. Neuroscience methods like EEG and eye-tracking will also be demonstrated. Psycholinguistics: students design and conduct a traditional psycholinguistic experiment, and disseminate results in the format of a course paper. Memory: students plan and conduct an experiment on memory using either behavioural or eye-tracking methodology. Sleep research: students learn the basics of the discipline, with special focus on the overlap of sleep research and cognitive neuroscience, its research streams and most important methodologies. Along with the major research paradigms (e.g. sleep deprivation, biorhythms, the neurobiological background of sleep disorders, sleep and memory consolidation, sleep-related information processing) students learn how to register and analyse sleep-related EEG. (9 credits)

Evolutionary Psychology
BMETE47MC07 – 2/0/0/f/3
Dr. Péter Simor
Evolutionary sciences and their hierarchy. The origin and fate of the Darwinian heritage in psychology. The notion of adaptation. Modular and single factor

Informatics

BMETE92MC19 – 0/2/0/f/3

Dr. János Tóth

The aim is to provide and extremely powerful tool to solve calculation, simulations, drawing, presentation, etc. problems connected with the studies of the student, which will also come useful later in research. The tool Mathematica, Version7, at the time of writing this syllabus, is also useful to show the latest developments in different fields of applied computer science, such as programming paradigms (with emphasis on functional programming). Parts of mathematics will also be presented or repeated in this course. – Topics: Mathematical program packages. An intelligent calculator: application in elementary mathematics. Kernel, front end, packages, demonstrations. Numbers, solving equations. Plotting, graphics. Animation, manipulation, sound. The language of Mathematica. Lists and generalized lists. Functional programming. Rule based programming. Rewrite rules. Pattern matching. Procedural programming. Applications in mathematics: discrete, continuous, stochastic. Applications in linguistics. Elements of image processing. (3 credits)

Introduction to Cognitive Science

BMETE47MC01 – 2/0/0/f/3

Dr. Gyula Demeter

Introduction to Experimental Psychology

BMETE47MC25 – 2/0/0/v/3

Dr. Gyula Demeter

Introduction. Understanding psychology as a science. Experimental psychology and the scientific method. Research techniques: observation and correlation, experiments. Ethics in psychological research. Attention and reaction time. 1st Written examination paper. Conditioning and learning. Memory and forgetting. Individual differences and development. 2nd Written examination paper. Presentation of research plans. Presentation of research plans. (3 credits)

Mathematics

BMETE92MC15 – 2/2/0/v/5

Dr. János Tóth

The aim of the course is to give a nontechnical introduction into higher mathematics via lectures and via reading texts containing the use of mathematics in the different parts of cognitive science. Instead of calculation methods logical and philosophical connections will be emphasized. Technical and geometrical aspects will not receive emphasis, however, we try to analyse the meaning of notions within and, if possible, outside mathematics. Instead of proofs examples will be shown together with applications and with historical remarks. A shortened introduction to the classical material of calculus will be followed by introductions to areas which cannot be absolutely neglected by someone interested in cognitive science: dynamical systems, graphs and networks, algorithms and the use of computers in mathematics. – Topics: Fundamental notions of set theory and logic. A review of the notion of numbers. Relations and functions. The connection between operations and relations and between functions. Operations on functions. Series and infinite sums. Convergence, limit. Limit and continuity of real variable real valued functions. Differentiability of real variable real valued functions. Tangent. Rules of derivation. Applications of calculus: analysis of functions. Monotonicity, maxima and minima. Integration: antiderivative, definite integral. The fundamental theorem of calculus. Solving simple differential equations. On discrete dynamical systems. Simple models with chaotic behavior. On graphs and networks. Their rules of modelling. Algorithms. Applying mathematical program packages. (5 credits)

Memory and the Psychology of Learning

BMETE47MC29 – 0/3/0/f/3

Dr. Mihály Racsmány

The topics covered in the course are the currently topical areas of memory research. The most controversial results and new theories of the various topics are discussed based on one or two studies. – Sleep and memory. Consolidation and reconsolidation.
Amnesia. Prospective memory. Autobiographica
teny integration, alpha-gamma interactions. Memory decay. Consultation with students on
neocortex and limbic system: Broca, the concept
memory. Memory decay. Consultation with students on research proposal. Recall. Inhibition and interference. Learning and transfer. Working memory. Consultation with students on second research proposal. (3 credits)

Neurobiology 1 – Foundations and Neurobi-
ology of Perception
BMETE47MC22 – 2/0/2/v/5
Dr. Gyula Kovács
Basic neural processes, the cell membrane, the ac-
tion potential. The synapse. Autonomous nervous
Dr. Szabolcs Kéri
neocortex and limbic system: Broca, the concept
tion of pain and temperature. Vision: early vision,
(Desimone). Frontal eye field [FEF] and intrapari-
tal systems. Neglect. The biased competition model
bottom-up, dorsal top-down and cingulo-opercular
frontoparietal system, thalamus, colliculus. Ventral
cept of attention: alerting, orienting, executive. The
neme", large-scale neuronal networks. The Bayes
model, Friston’s free energy principle. Posner’s con-
tation of attention: alerting, orienting, executive. The
frontoparietal system, thalamus, colliculus. Ventral
bottom-up, dorsal top-down and cingulo-opercular
systems. Neglect. The biased competition model
(Desimone). Frontal eye field [FEF] and intrapari-
tal sulcus, search versus detection. Attention and
temporal integration, alpha-gamma interactions.
Cellular bases of the biased competition model, in-
teraction of preferred and non-preferred stimuli in
the receptive field, attentional weighting. FEF mi-
crosisimulation, role of dopamine in attention and
decision making. Subfields of intraparietal sulcus,
attention and body-reference, affordances, inter-
actions with premotor cortex canonic cells. Atten-
tion and Gestalt-organization, feature integration
(Treisman) pop-out, “object file”, spatial filters and
their attentional modulation. Ultra rapid attentional
modulation. The MTL (medial temporal lobe) and its
connections with the prefrontal cortex: fornix, thala-
mus, prefrontal subfields. Gamma-on-theta tempo-
ral integration. (3 credits)

Neuropsychology
BMETE47MC06 – 2/0/2/v/5
Dr. Gyula Demeter
In this course students will study the neural founda-
tions of higher cognitive functions such as concept
formation, language, planning of action, problem
solving, emotions and consciousness, with a focus
on recent findings and methodological develop-
ment. Not only do recent findings and methodologi-
ical achievements shape scientific theory, they also
tend to affect therapy as well. We review these new
findings while looking for links between normal and
pathological functioning. (5 credits)

Psycholinguistics
BMETE47MC36 – 2/0/0/v/3
Dr. Agnes Lukács
The course is based on the relationship between
problems in linguistics and psychology and the his-
tory of the overlap between the two fields of research.
In analysing the processes of language comprehen-
sion, beside presenting experimental methods in
psycholinguistics, the main organizing principle is
the contradiction of decompositional and interactive
theories in explaining linguistic behavior, together
with the problem of the psychological reality of lin-
guistic levels. For speech production, the goal is to
present stage models of planning and realization, as
well as to demonstrate how production is embed-
ded in conversation. The course also relates models
of lexical organization to analyses of conceptual
organization. The part on child language mainly fo-
cuses on constructivist and innatist explanations of
psycholinguistics, the main organizing principle is
their attentional modulation. Ultra rapid attentional
modulation. The MTL (medial temporal lobe) and its
connections with the prefrontal cortex: fornix, thala-
mus, prefrontal subfields. Gamma-on-theta tempo-
ral integration. (3 credits)

Neurobiology 2 – Sensory and Motor Processes
BMETE47MC23 – 2/0/0/v/3
Dr. Gyula Kovács
Multisensory integration. The human eye – anato-
mom, eye-movements, the retina. Subcortical mechani-
cisms, thalamic nuclei and the superior colliculus.
Dorsal and ventral visual pathways. Hearing. The
motor system: from the muscle fibre to the spinal
chord, brainstem, cortex, the basal ganglia and the
cerebellum. (3 credits)

Cellular bases of the biased competition model, in-
teraction of preferred and non-preferred stimuli in
the receptive field, attentional weighting. FEF mi-
crosisimulation, role of dopamine in attention and
decision making. Subfields of intraparietal sulcus,
attention and body-reference, affordances, inter-
actions with premotor cortex canonic cells. Atten-
tion and Gestalt-organization, feature integration
(Treisman) pop-out, “object file”, spatial filters and
their attentional modulation. Ultra rapid attentional
modulation. The MTL (medial temporal lobe) and its
connections with the prefrontal cortex: fornix, thala-
mus, prefrontal subfields. Gamma-on-theta tempo-
oral integration. (3 credits)

Psycholinguistics
BMETE47MC36 – 2/0/0/v/3
Dr. Agnes Lukács
The course is based on the relationship between
problems in linguistics and psychology and the his-
tory of the overlap between the two fields of research.
In analysing the processes of language comprehen-
sion, beside presenting experimental methods in
psycholinguistics, the main organizing principle is
the contradiction of decompositional and interactive
theories in explaining linguistic behavior, together
with the problem of the psychological reality of lin-
guistic levels. For speech production, the goal is to
present stage models of planning and realization, as
well as to demonstrate how production is embed-
ded in conversation. The course also relates models
of lexical organization to analyses of conceptual
organization. The part on child language mainly fo-
cuses on constructivist and innatist explanations of
language development, and connects them to our
current biological knowledge. (3 credits)

Reading Seminar in Psycholinguistics 1, 2, 3
BMETE47MC31, 32, 33 – 2/0/0/v/3
Dr. Anna Babarczy
The course discusses current issues in psycholin-
guistics and experimental linguistics through the
analysis of current theoretical and empirical papers
in the Hungarian and international literature. Each
semester, the most topical issue will be chosen. Top-
ics to choose from include: Theoretical debates in
Social Cognition

BMETE47MC28 – 2/0/0/v/3

Dr. Szabolcs Kéri

Statistics and Methodology

BMETE92MC20 – 2/0/2/v/5

Dr. Mártia Lángné Lázi

All the major areas of statistics (such as estimation, hypothesis testing, regression) will be treated with special reference to the assumptions usually assumed in introductory courses (such as normality, linearity, stationarity and scalar valuedness), which, however, are never fulfilled in real applications. How to test these assumptions and what to do if they are violated - these questions will act as guides in the course. – Topics: Random variables. Distributions. Generating random numbers. Sampling. Methods of estimation. Confidence intervals. Testing hypotheses. Independence, normality. Regression and interpolation. Getting and importing data. Cluster analysis. Experimental designs. Applications. Writing a report. Depending on the circumstances the calculations will either be done using Mathematica, or EXCEL, or SPSS. (5 credits)
General Information

Based on the long tradition of providing education in the fields of economics, management and social sciences, in 1998 the Budapest University of Technology and Economics established a new faculty, the ‘Faculty of Economic and Social Sciences’ employing 300 instructors and researchers.

Parallel to the traditional five-year university training, according to the Bologna model the two-cycle system (for BSc and MSc degrees) was introduced in 2006.

The accredited full time degree programs in Economics, Engineering Management, Communication and Media Studies, Teachers Training in Vocational Fields are carried out according to the latest European standards. Besides its own training programs the Faculty co-operates closely with all the engineering faculties of the University providing courses in management, economics, social sciences, languages and physical education.

Additionally the Faculty offers different kinds of post-graduate programs and short-term courses of various types.

Currently more than 50 PhD students are participating in different individual research programs in different areas of economic and social sciences.

The Faculty of Economic and Social Sciences pays special attention to the integration of theoretical and practical knowledge in its curricula and Faculty has established strong professional relationships with the participants of various economic fields (profit and non profit oriented institutions, banks etc).

Educational and Research Activities

The total number of participants of different graduate-, postgraduate and distance learning forms of training launched by the faculty is about 6000. The number of full-time students of basic training of the faculty itself has been increasing. Research is conducted in 2 doctorate (PhD) schools.

Languages, International Studies

Dutch, English, French, German, Italian, Spanish, Russian and Hungarian as a foreign language are taught at levels from A1 to C1 by 80 lecturers and language instructors at BME Centre of Modern Languages. Language instruction for Specific Purposes (LSP) as well as translator and interpreter training are also offered by the Centre.

Students can sit for nationally and internationally accredited general and specific (LSP for Economics or Engineering) language exams at 3 different levels (B1, B2 and C1) at the BME Language Examination Centre.

The teaching staff of the Centre is actively involved in the Hungarian and Central European Studies programme (for detailed description see the section of Hungarian and Central European Studies).

Physical Education

The University offers a wide range of curricular and extra-curricular forms of physical education. The Department of Physical Education co-operates with the University Sports Club and other student sports organisations.

Farkas Heller Foundation

Farkas Heller was a world famous professor of economics and former rector of the University. The foundation established in 1999 in his honour provides for the development of training and research at the Faculty. The foundation operates as an organization of common benefit. The foundation receives donations from different organizations for different general and specified tasks that would promote the establishment of further forms of cooperation with companies, research centres and other organizations.

Harvard Business Review

It was a great honour for us that professors of our faculty formed the editorial board of the Hungarian edition of the outstanding international business journal Harvard Business Review. The Hungarian edition was published from 1999 until 2011.
Institutes and Departments

Institute of Applied Pedagogy and Psychology
Department of Ergonomics and Psychology
Department of Technical Education

Institute of Economic Sciences
Department of Economics
Department of Environmental Economics

Institute of Social Studies
Department of Philosophy and History of Science
Department of Sociology and Communication

Institute of Business
Department of Management and Corporate Economics
Department of Finance
Department of Business Law

Center of Modern Languages
BME Language Examination Centre
English Department
German Department
Department of Romance Languages
Section of Hungarian Language
Section of Slavic Languages

Center of Physical Education

Budapest University of Technology and Economics
Faculty of Economic and Social Sciences
Faculty Office:
Building “Q” wing A, Mezzanine-floor, Room 5.
Mailing Address: Magyar tudósok krt. 2.
H-1111 Budapest, Hungary
Phone: (+36-1) 463-3591
Fax: (+36-1) 463-3590

Dean of the Faculty: Dr. Tihamér Margitay
Vice-Deans of the Faculty:
Dr. Edit Németh (education)
Dr. Benedek Láng (scientific and international)
Dr. Gábor Bóta (finance)
Dr. Zsuzsanna Eszter Tóth (quality management)
Forms of Training (in Hungarian)

BSc/BA training in the two-cycle system

- Full-time degree courses and programs
 - BSc in Engineering Management
 - BA in Business and Management
 - BA in Applied Economics
 - BA in Communication and Media Studies
 - BA in International Business
 - BA in Vocational Technical Training
 - BA in Finance and Accounting

- Full-time Bachelor programs
 - Business Administration and Management
 - International Business Economics
 - Finance and Accounting
 - Communication and Media Science
 - Engineering Management

- Part-time Bachelor program
 - Vocational Technical Instruction

MSc/MA Programs

- Full-time Master programs
 - Finance
 - Management and Leadership
 - Regional and Environmental Economic Studies
 - Psychology
 - Communication and Media Science
 - Engineering Management

- Part-time Master programs
 - Marketing
 - Accountancy
 - Master of Business Administration (MBA)
 - Teacher of Economics
 - Teacher of Engineering

Postgraduate programs

- Environmental Management Specialist
- School Management
- Master of Business Administration (MBA) (in Hungarian and also in French)
- Management
- Work and Organizational Psychology
- Translator and Interpreter

Accredited doctorate (Ph.D.) schools

- Business and Management
- History and Philosophy of Science

The language for the training is Hungarian, but most of the departments offer courses in English as well, with which the faculty is represented in the programs of all engineering faculties. Every year more than 50 courses are offered in English for students from other BME faculties’ full-time programmes and for our part-time international mobility program students (Erasmus, CEEPUS and “Science without Borders”).
English language course offer for Erasmus+ mobility program

Management and Business Economics

BMEGT20A001
The course is designed for engineering students who would like to have a better conceptual understanding of the role of management in the decision making process. The course introduces the essentials of management as they are applied within the contemporary work environment. Particular attention is paid to management theories, corporate finance, motivation, leadership, teamwork, change management, quality management, management of technology, economic calculation and operations management. For problem formulation both managerial interpretation and mathematical techniques are applied. (4 credits)

Quality Management

BMEGT20M002
Spring semester only!
The primary goal is to acquaint students with the current issues and methods. Students are given an overall picture of quality philosophies applied in both productive and non-productive industries, the basics of quality management related standards and total quality management including self-assessment models and of the various soft and hard methods of quality management. (2 credits)

Management

BMEGT20MW02
Autumn semester only!
The course introduces the field of the life in workplaces, It covers a wide range of theories and applications dealing with such topics as motivation, team dynamics, leadership, organizational culture, and different HRM activities, like recruitment and selection, performance appraisal and training. The goal of this course is to help students develop a conceptual understanding of theories in organizational life (Organizational Behaviour) and to provide a special set of skills for managing human resources (Human Resource Management), not only for those who are in managerial positions but for future engineers and other professionals. (5 credits)

Marketing

BMEGT20A048
Autumn semester only!
Learning outcomes: After the course the students will be able to understand the role of marketing in an organization. Students will become familiar with marketing tasks, tools and strategies. Through practical work students will be able to elaborate certain marketing topics using the knowledge acquired during lectures.

Micro- and Macroeconomics

BMEGT30A001

History of Economic Thought

BMEGT30N001
Spring semester only!
The subject’s main goal is to give an introduction into the evolution of economic thinking. Beginning with the ideas of ancient Greek philosophers about economic and social life and following on from Thomas Aquinas’ scholasticism, the course turns to the theories and practice of mercantilism. The study of pre-classical Scottish philosophers will be the basis for understanding liberalism and the classical supply-side economics in the 18th century. It will be shown that the development of technology had implied that the demand side became the bottle-neck and thus the foundation of modern micro- and macroeconomics. (2 credits)

Accounting

BMEGT35A002
Autumn semester only!
“Students of the course receive managerial and other prac-
tice-oriented knowledge concerning the financial and profitability status of companies, learn about the methodology, procedure and settlement of financial transactions. The purpose is to provide students with a confidential knowledge in the field, to guide them in the language of business, to present a financial concept and to supply them with skills necessary for international communication based on accounting cognition. (2 credits)

Finance
BMEGT35A001
Spring semester only!

Economic Policy
BMEGT35A003
Autumn semester only!
The objective of the course is to introduce the students to the fundamentals of business-government relations in the environment of modern market economy. Basic theories, schools and ideologies of economic policy as well as their main institutions and institutional participants are discussed. The theory and practice of economic intervention of the government are illustrated by means of cross-sectional analysis for various states and with respect to the specific issues for the stabilization of their economic policies. Special attention is devoted to the economic policy processes of Eastern European countries and to the investigation of dilemmas related to Hungarian economic policy. (2 credits)

Investments
BMEGT35M004
Autumn semester only!
The main topic of this course is fixed income valuation, with a special emphasis on US mortgage backed securities. First, we briefly review the fundamentals of modern portfolio theory, starting from Markowitz's original model to the foundations of modern multi-factor models. We analyze the Capital Asset Pricing Model, define risk, introduce risk measures and talk about the risk free rate and risk premium. Later, we turn our attention to fixed income instruments. We classify the instruments, and review the most frequent cash-flow structures, then discuss valuation. We define duration and convexity, and the basics of building an index replicating bond portfolio. We go into more details in US agency (prime) mortgage backed pass-through and structured securities. Using MS Excel to model prepayment behaviour, we simulate future interest rates, generate cash-flows of complex structured products and finally use Monte Carlo simulation to calculate modelled price. We define and calculate option adjusted spreads. The second part of the course is quite technical. While not a prerequisite, some background in probability theory, Monte Carlo simulation, interest rate models, and general mathematics is considered an advantage. (2 credits)

Research Methodology
BMEGT41A002
Autumn semester only!
The undergraduate course offers a basic introduction to long-standing issues concerning scientific knowledge and methodology. It examines case studies taken from realistic scenarios and surveys a variety of topics from the standard philosophy of science. The course discusses issues from the point of view of empirical research in various fields as well as from the point of view of epistemology and philosophy. The topics covered give an introduction to core concepts and connect recent contributions that explore contemporary approaches (e.g. recent advances in the philosophy of measurement and modelling). Apart from familiarizing the student with the established theories and key concepts in philosophy of science and methodology, the course also examines the mechanisms that underlie scientific creativity and discusses the ethical responsibilities of scientists and engineers. (2 credits)

Art of Negotiations and Basics of Presentation Techniques
BMEGT41A010-ER
Spring semester only!
The presentation techniques part of the course is designed to give the students some insights into useful presentation techniques that can be used throughout their academic and non-academic career. In the art of negotiations segment of the curriculum we help students to become self-aware and successful negotiators. The basic theoretical foundations of the art of negotiations are also covered (BATNA, competitive arousal etc.). (2 credits)

Logic and Argumentation
BMEGT41A027-ER
The undergraduate course offers a basic introduction to the everyday issues and scientific use of arguments with an introduction to formal and informal methods of analysing argumentations. It examines case studies taken from realistic scenarios and surveys a variety of topics from standard logic, argumentation and critical thinking. The course discusses issues from the point of view of argumentation and formal analysis in various fields as well as from the point of view of rhetoric and critical thinking. The topics covered give an introduction to core concepts and connect recent contributions that explore contemporary approaches to analysing everyday discourses and theoretical works. Apart from familiarizing the student with the established theories and key concepts in logic and argumentation theory, the course also provides practical training that enables students to analyse complex arguments with the help of various tools. (2 credits)

EU Environmental and Regional Policy
BMEGT42MN06
Spring semester only!
This course unit aims to introduce the evolution of environmental and regional policies, their strategic elements and changing tools, and their contemporary practices and key policy areas in the European Union. The course will introduce the basics of regional policy; its goals and interrelations with environmental policy, and the practical implica-
tions on Europe. It will highlight the development stages of regional policy in Europe, focusing on the key milestones and reform efforts in an expanding European Union. During the latter part of the semester, the course will introduce students to the fundamental concepts of environmental policy: its origins, nature and key stages of development. It will also focus on the EU’s Environmental Action Plans, and the Sustainable Development Strategies. (6 credits)

Theory and Practice of Environmental Economics
BMEGT42N000

The subject aims to present the most important principles of environmental economics, environmental policy and sustainability as well as to show some practical applications. The topics included are: systems and relations of economy, the society and the environment, a historical overview of environmental economics, the concept, levels and different interpretations of sustainable development. Environmental policy from an economic perspective is also discussed: its definition and types, economic and regulatory instruments in environmental protection, their advantages and limitations. Theoretical approaches include the theory of externalities, internalisation of externalities, Pigovian taxation, the Coase theorem, environmental economics in a macroeconomic context, alternative, “green” macro-indicators (NEW, ISEW,GPI), monetary environmental valuation, the concept of total economic value and environmental valuation methods (cost-based methods, hedonic pricing, travel cost method, contingent valuation, benefit transfer). Environmental Policy in Hungary, Introduction to environmental economics. Nature conservation and natural parks. Energy policy: providing a safe and sustainable development strategy, European and Hungarian Sustainable Development Strategy. Sustainable consumption, Corporate Social Responsibility. (4 credits)

Hungarian and EU Environmental Strategies
BMEGT42N001

Autumn semester only!
The course is aimed at providing an insight into the interrelationships between government and natural resources, and the theoretical and practical opportunities for executing strategies of sustainable development. The course will introduce the development of the concept of sustainable development, from its earliest days to the global factors of contemporary days. The course will explore the possible paths of transitioning to sustainability, firstly through the notion of resource management, and secondly from an aspect of corporate management, through Corporate Social Responsibility. The local and micro-regional levels of sustainability will be addressed. Students will get an insight into sustainable consumption, and closing the open links in the economic chain, including “Retain – Reduce – Re-Use – Recycle”, and the principles of Life Cycle Analysis. Students will get an overview of regulating recycling and other policy measures. Finally, the course will focus on the technological foresight in conjunction with sustainable development, and the outlines of the key trajectories. To wrap up the course, an overview of European sustainable development policy will be given. (4 credits)

Regional Economics
BMEGT42N002

The aim of this subject is to introduce basic, actual regional economics and spatial planning theory as well as the EU and Hungarian practice. The topics of the subject include the roots of spatial planning in economic theory, including the theories of Thünen, Weber and Lösch, the theory of central places, growth poles and growth centres and territorial division of labour (Ricardo, Ohlín). The structural funds of the EU are introduced in detail. Further topics include the types and history of regions in Western, Central and Eastern Europe, regionalisation, decentralisation and regionalism, rural development, the effect of agricultural policy on rural development and rural development in Hungary, urban development, historical overview, differences between Western and Eastern Europe. The main characteristics of infrastructure development are also introduced, as well as the types of borders, the significance of borders in regional development and cross-border regional co-operations. Finally, the financial instruments of regional development, advantages and disadvantages of various instruments, Hungarian practice, distribution of resources among regions, institutional background and the system, management and financing of Hungarian municipalities are presented. (2 credits)

Environmental Management of Energy
BMEGT42N003

The aim of the subject is to introduce and expand the scope of sustainable energy and resource management both on a domestic, EU and global scale, primarily from the corporate and policy aspects. The course will give an overview of the energetic status and trends in the EU and the world. It will give an introduction to Energetic Life Cycle Analysis. Business model of energetics and energy enterprises. EU energy policy, environmental and sustainability strategies. Energy strategies and energy-saving programmes. A Sustainability analysis of the environmental effects of the different kinds of sources of energy. Energetic interrelations in climate protection. Pollutions from energetic sources in Hungary and the EU. State institutions of energy and environmental protection policy. Summary and future perspectives. (2 credits)

Environmental Management Systems
BMEGT42A003

Autumn semester only!
The course covers the topics relevant to the protection of environmental compartments, environmental pressures and pollution in a global context. The course introduces the concepts, indicators and tools of environmental protection, and the environmental management systems (EMS) at enterprises and other organizations. EMS topics include the assessment of environmental aspects and impacts, environmental audits, reporting, environmental performance evaluation, life cycle assessment. (3 credits)

Environmental Evaluation and Risk Management
BMEGT42A022

Autumn semester only!
Monetary valuation of natural capital and the concept of sustainable development (weak and strong sustainability). The necessity to valuate natural resources: the problem of public goods and free goods, discounting (social discount rate) and externalities. The areas of application and methodological basics of environmental valuation. The concept and elements of Total Economic Value. A detailed overview of the methods of environmental valuation: cost-based methods, productivity approach, revealed preference methods (hedonic pricing and travel cost method), stated preference or hypothetical methods and benefit transfer. An introduction to risk management: definition and approaches of risk, corporate risk management techniques, corporate...
The history of research in communication studies has been highly intertwined with questions concerning research methodologies. The reason for this is that methods for studying communicative phenomena as communicative phenomena are strongly intertwined with questions concerning research methodologies. The aim of the course is to provide students with an overview of these developments and to introduce them to current research methodologies in communication studies. Theoretical issues will be examined in an interdisciplinary framework, allowing students to study the results and methods of related disciplinary fields (e.g., sociology, anthropology, cultural studies, cognitive, evolutionary and environmental psychology). Small groups of students will conduct specific research projects of their choice during the course of the semester. Topics for discussion will be formulated in relation to these research projects. (5 credits)

Sectoral Sustainability Studies

BMEGT42M004

The course unit aims to give an overview of the sectoral aspects and particularities of the transition to sustainable development. Students are introduced to the concept of sustainable development and the basics of environmental evaluations. They are then introduced to the horizontal strategies and policies of sustainable development. To conclude, students will learn about the sustainability strategies in various economic sectors. (5 credits)

Sociology

BMEGT43A002

This course will give students an introduction into sociology by discussing a subject that concerns all of us: the global financial crisis and the ensuing Great Recession (or Slump). The course offers fundamentals for students interested in the social changes brought about in contemporary societies, and provides expertise on the social conditions and consequences of scientific and economic activities that may be taken advantage of in the fields of economics and engineering. (2 credits)

Philosophy of Art

BMEGT43A186

The course will introduce students into some major issues and problems in aesthetics and the philosophy of art. We will study a number of philosophical questions about the nature, the production, the interpretation and the appreciation of works of art. After studying the basic philosophical categories concerning art and artworks we will concentrate on specific aspects of the creation and appreciation of paintings, drawings, photographs, moving images, digital images, fictions, music etc. For instance, we will consider questions and arguments about “realism” with respect to pictorial works of art, about literature and fictional works, and about the understanding and appreciation of music. Although most of the course will be devoted to the analytic philosophy art, we will also examine issues concerning design practices and products. (5 credits)

Interdisciplinary Research in Communication Studies

BMEGT43M100

Autumn semester only!

The history of research in communication studies has been strongly intertwined with questions concerning research methodologies. The reason for this is that methods for studying communicative phenomena as communicative phenomena have been developed over the course of rethinking and reformulating traditional disciplinary frameworks according to new perspectives, new conceptual systems and new scientific methodologies. (5 credits)
The cultural History of Recorded Music

BMEGT43A066

Technology for recording, processing, storing and distributing information does not only influence access to cultural products (price, circulation, distribution channels). It also fundamentally impacts upon the formation of cultural canons and, on an individual level, the reception, interpretation and social use of cultural products. The theoretical perspective of the course draws on Cultural Studies, Media Theory, the Sociology of cultural production and consumption, as well as Popular Music Studies. Besides the technological history of sound recording, we will also look at the history and logic of the music industry, primary areas of sound archiving and collecting, and further cultural use relating to recorded music. We pay particular attention to avant-garde/ experimental music that makes use of recorded music; digital pop music and DJ culture; as well as copyright debates relating to sampling and remixing. (2 credits)

Cultural Antropology

BMEGT431143

The course introduces basic theories of the Sociology of Culture relating to identity, subcultures, cultural differences and ethnicity, as well as presenting and discussing their practical relevance. Throughout the semester, we will critically examine the concepts of high, mass and subculture, as well as those of nation, tradition, and community. The aim of this critical inquiry is not the relativisation of the mentioned concepts, but the introduction of those processes of social construction that lead to the emergence, consolidation and at times (re)negotiation of these categories and the related values and emotions. Through such inquiry, we are aiming towards a more nuanced understanding of the social-cultural conflicts of today’s globalised society by the end of the semester. Beyond presenting relevant theories and literature, the goal is to discuss the practical relevance and applicability of the observations through examples taken from across the globe. (2 credits)

Sociology for Architects

BMEGT43A044

Spring semester only! Important note: for Architects and Civil Engineers only

The course will be presented for foreign students of the Faculty of Architecture. The aim of the course is to analyse the social context of urban development and the social implications of spatial problems. We will treat the main problems of urban sociology: e.g. architecture of cities, traffic, congestion, experience of urban life, the behaviour of inhabitants, housing, planning of cities, etc. Urban sociology examines the social aspects of urban life: planning improvement of life in cities, urban forms and structures, histories of urban growth, biological or ecological basis of urban behaviour, quality of the urban experience, etc. We will analyse the anonymity, unpredictability and uncertainty of events, senses of possibility and danger induced by cities. Some of the main questions are: How is urban life affected by the features of local social structure? How do informal social bonds develop? How can the history of urbanisation be explained? What are the basic features of the spatial structure of cities? During this semester we will analyse how the interacting mechanisms of capitalism and modernity constitute differential urban experiences. We provide a brief history of urban sociology, mostly focusing on the results of the Chicago Schools, while also exploring other economic and sociological theories of urban development and declination.

It is important to study processes which produce inequalities within cities, e.g.: gentrification, suburbanisation, and household division. We should like to focus directly on the city and modernity. We consider Georg Simmel and Louis Wirth classic works as dealing with a “generic” urban culture. The urban ways of life could be contrasted with the rural ways of life. We state (after Walter Benjamin) that no account of urban culture is adequate unless it takes seriously personal, unique experiences of urban life, in the context of broader cultural forces. Finally, we analyse urban politics, changing political agendas, local economic policy, urban protest, urban planning, etc. (2 credits)

Pedagogy-Digital Pedagogy

BMEGT51A001

History of Education and Technologies of Communication

BMEGT51A017

(Lifelong) Learning and Working Life

BMEGT51A020

Emphasizing the development of independent problem-identifying and problem-solving skills by analyzing Hungarian and European labour market challenges. In the framework of optional exercises and self-controlled learning processes and by acquiring the steps of program planning concentrating on the field of technology, training orientation possibilities are granted to participants in their fields of interest. During the training period we will present the practical applicability and large scale practice orientation through theoretical knowledge, wide-range technological examples, case-studies and the analysis of changes. The participants of the course will gain the necessary knowl-
Ergonomics

BMEGT52A001

Spring semester only!

Concept of Ergonomics: Man-machine systems, levels of compatibility, characteristics of the human and the technical subsystems, significance and quality of user interface. Workplace design: Basic ergonomic principles and design guidelines for different working environments: workshops in mechanical industry, traditional and open room offices as well as other working places with VDU's, control rooms in the process industry, client service workplaces (governmental organizations, banks and ICT companies). Human factors of safety. Human-computer interaction: Analytical (cognitive walkthrough, guideline review and heuristic) and empirical methods of assessing usability of software and other smart products. Website quality, web-mining. Industrial case studies with the INTERFACE research and assessment workstation. (2 credits)

Psychology

BMEGT52A002

Autumn semester only!

Fashion, advertising & psychology

BMEGT52V100

Autumn semester only!

The course aims to look behind the scenes of the colorful and glamorous world of fashion and advertising. What we see at first glance is a huge industry where millions of professionals are pushing the machinery to play upon our instincts. We shall study the methods, review the role of public relations, sales promotion, the role of the brands, and the templates and stereotypes used in the different media. The vast amount of knowledge piled up by behavioral sciences will help us answer the question why our basic instincts to imitate can be used and abused. Why is it that we are ready to spend billions on shampoo, new clothes, junk food, gadgets etc., hoping to buy identity. We shall study the methods, reviewing the role of public relations, sales promotion, the role of the brands, and the templates and stereotypes used in the different media. The vast amount of knowlegde piled up by behavioral sciences will help us answer the question why our basic instincts to imitate can be used and abused. Why is it that we are ready to spend billions on shampoo, new clothes, junk food, gadgets ... etc. hoping to buy identity. We will also reveal that the very nature of the social animal - the group - plays an even more decisive role in our preferences and purchases – introducing a variety of approaches from the basic theories of fashion (trickle down, cascade, herd behavior) to network theories. (2 credits)

Business Law

BMEGT55A001

The aim of the course: Characteristics of the Anglo-Saxon and continental systems of business law. The development of the system of the Hungarian business law. Basic legal institutions of the state to manage the economics. Organisations and enterprises as the subjects of law: conceptional questions. International models of company law. The development of the Hungarian company law. General rules of the Hungarian Company Act. Internal organisation of companies. The law of company registration, the registration proceedings and the company registry. Companies with a partnership profile. Companies limited by shares. Concept and types of securities. Competition law. EU directives and regulations on companies and competition: their execution in the Hungarian law. (2 credits)

Hungarian Culture

BMEGT658361

This interdisciplinary course covers a variety of interconnected fields to present a comprehensive survey of Hungarian culture and history. The course is thematically organised and focuses on Hungarian culture as it is expressed through the arts (fine arts, literature, and music). Special emphasis is given to the history of Hungarian thought from early to recent times. The concepts of Hungarian poets, writers, composers, and scientists are considered in their historical and social context. (2 credits)

Beginners’ Hungarian Course

BMEGT658151

The course focuses on the basic elements of Hungarian grammar: the sound-system and spelling; some elements of morphology; most important syntactic structures. The students acquire a basic vocabulary and a number of idiomatic phrases of everyday Hungarian, and develop skills to enable them to communicate in simple routine tasks. (4 credits)
Intermediate Hungarian Course

BMEGT658152

Spring semester only!
The course is designed for students who have already studied Beginners’ Hungarian (BMEGT658151) and acquired the basics of the language. The teaching material includes the more complex syntactic structures and the inflectional system, the use of tenses, and the most important elements of composing texts in Hungarian. Topics: Visiting friends and family; Family relations; Food and drink, shopping for food, cooking and baking; Restaurants – eating out; Free time activities: travelling around; Going to the cinema and theatre; Public transport in Budapest; Driving in Hungary. (4 credits)

Crosscultural Communication – ... (language)

English BMEGT658152

The course is designed at awareness of cultural differences, develop their intercultural competencies. Special emphasis is on verbal and non-verbal communication, language diversity, and socio-cultural factors.

Specific Language Features in the European Union - in (foreign language)

BMEGT658152

(*characters depend on the language of the instruction)
The course is designed at an awareness of the EU institutions and their functions. It also aims to enable students to take an active part in discussions about the European Union, its activities and current issues. Students will be prepared to explain their viewpoint clearly and effectively.

Language for Specific Purposes (LSP) – ... Engineering in (foreign language)

BMEGT62M*EU

(*characters depend on the language of instruction and ** on the specific field of engineering)**
This course is designed to prepare students to be successful in the academic and work environment. It enables students to take part in professional discussions fluently and effectively; to clearly express his/her point of view reasoning logically for or against. Special emphasis is on language functions and specific vocabulary of the students’ specialization.

English and other language subjects offered for Erasmus students

(“Language) for Engineers

English BMEGT658152

German BMEGT658152
French BMEGT658152
Italian BMEGT658152
Spanish BMEGT658152
Russian BMEGT658152

The course is designed to meet the language needs of students in academic and professional fields. Special emphasis is on understanding complex technical texts, as well as producing clear paragraphs and essays on certain technical topics.

Communication Skills – (language)

English BMEGT658152

German BMEGT658152
French BMEGT658152
Italian BMEGT658152
Spanish BMEGT658152
Russian BMEGT658152

The Communication Skills course is designed to meet the language needs of students in academic and professional fields. Special emphasis is on the language of meetings and discussions, oral presentation and summary writing.

Manager Communication – (language)

English BMEGT658152

German BMEGT658152
French BMEGT658152
Italian BMEGT658152
Spanish BMEGT658152
Russian BMEGT658152

This course is designed to prepare students to be successful in exchange programmes and in the business environment. Special emphasis is on job-related activities and topics like public relations, job descriptions, CV-writing, job interviews, managing conflicts and changes.

Yoga Classes

BMEGT70BS1B

Semester: autumn/spring
Yoga Classes on Monday and Tuesday 8.30-9.30 (BSc/BA and MSc/MA)
Focusing on good posture, for a healthy life.
We all tend to forget to take care of our posture (to sit correctly, and more), which sooner or later may lead to some spine related issues. In our yoga classes we stretch all the muscles which tend to get shortened due to this, and we strengthen the ones which may become weak as a result of modern lifestyles.
Since we all have different body parts to consider – from the neck, to the lower back - our yoga classes are designed to give everybody a set of exercises to support their whole spine and help stay flexible, toned and healthy.
By the way, if you feel ‘perfect’ - meaning without any health issues - you’re also going to enjoy these sessions as they’ll help keep you in top condition.
Everyone is very welcome!
Basketball

Semester: autumn/spring
Basketball for Erasmus Students (BSc/BA and MSc/MA)
During the semester we offer basketball classes in Bercsényi hostel's gym (Bercsényi str. 28-30) for Erasmus students. These classes are focusing on the game.
If you are professional – or just a hobby player, you’re also going to enjoy these session as they’ll help you get to know each other. In lessons free playing is dominant, you can join us every Friday between 14.00-17.00. We wait all interested with pleasure!
Faculty of Transportation Engineering and Vehicle Engineering
The Faculty of Transportation Engineering and Vehicle Engineering is educating engineers since 1951 in fields of transportation and logistics processes, vehicle operation, planning, control and related complex technical requirements. The aim of the education is to qualify graduates, who will manage tasks in the fields of transport operation and management, enterprise logistics systems, supply-distribution network organization and manufacturing of industrial machines.

The Faculty of Transportation Engineering and Vehicle Engineering offers 3 BSc programmes.

- In the **Transportation Engineering BSc** we focus on transportation and shipping related processes and their control.
- Students will acquire knowledge on the transportation vehicles, machinery, material handling and building machinery in the **Vehicle Engineering BSc** programme.
- Meanwhile the **Logistics Engineering BSc** offers complex insight and knowledge in corporate logistics systems and supply chains and also helps with building up an analytical point of view.

The Faculty offers 3 MSc programmes:

- **Vehicle Engineering MSc**
- **Transportation Engineering MSc**
- **Logistics Engineering MSc**

At the end of each programme the best graduates can take part in the PhD programme of the Faculty. The program is hosted by the **Kandó Kálmán Doctoral School**, which is one of the main sources for engineers in the fields of vehicle technology, transportation and logistics in the country.

Departments:

- Department of Material Handling and Logistics Systems
- Department of Automobiles and Vehicle Manufacturing
- Department of Vehicle Elements and Vehicle Structure Analysis
- Department of Control for Transportation and Vehicle Systems
- Department of Transport Technology and Economics
- Department of Aeronautics, Naval Architecture and Railway Vehicles

Budapest University of Technology and Economics

Faculty of Transportation Engineering and Vehicle Engineering

Faculty Office: Building K I. 27.
Address: H-1111 Budapest, Műegyetem rkp. 3.
E-mail: kjk@mail.bme.hu
Phone: +36- 1-463-3551

Dean of the Faculty: Dr. István Varga
Vice-dean of the Faculty: Dr. Ádám Török
Program co-ordinator: Ms. Barbara Mag
Description of BSc training

BSc in Vehicle Engineering
Length of study: 7 semesters

Program objectives: The aim of the bachelor education programme is to train vehicle engineers, who will be able to maintain and operate road, railway, water, air, construction and material handling vehicles with appropriate knowledge in the fields of transportation and logistics. They will be able to fulfill roles of vehicle engineering tasks, like improvement, manufacturing and operation. The listed tasks are accomplished by taking into account safety, environment and energy management aspects. The gained knowledge provides the basics to continue their education in the MSc programmes of the Faculty.

Specializations: Automotive vehicle, Aerospace vehicle, Naval vehicle, Railway vehicle, Construction equipment, Automated material handling equipment and robotics, Vehicle manufacturing, Vehicle mechatronics, Vehicle structure

Competencies and skills: Possessing the basic certificate, the vehicle engineers - taking into consideration also the prospective specialisations - become able:

- to determine the necessary equipment for the realisation of transportation and logistic processes,
- to organize, arrange, control the safe, the powerful and environmental-protective operation of vehicles, vehicle systems, mobile machines, materials-handling machines and machine systems,
- to perform the basic engineering tasks related to the designing, manufacturing, repair, as well as organisation of vehicles and mobile-machinery,
- to provide and organize the official work related to installation and operation of vehicles and mobile-machinery.

BSc in Transportation Engineering
Length of study: 7 semesters

Program objectives: The aim of the bachelor engineering programme is to train transportation engineers, who will be able to organize and operate processes of passenger and goods transportation. They will learn how to choose proper measures for these tasks, how to operate and maintain such transportation systems, including elements of infrastructure, control and IT systems. The gained knowledge is sufficient to continue their education in the MSc programmes of the Faculty.

Specializations: Road transportation, Railway transportation, Air transportation, Waterborne transportation

Competencies and skills: The transportation engineers received a basic certificate (BSc) - taking into consideration also the specialisations - become able:

- to recognise the demands for transportation and transportation-logistics, to determine the relationships to be applied,
- to exert active detailed cognition of transportation-and transportation logistics processes, to manage the processes mentioned together with their technical realisation,
- to design processes in accordance with the function of transportation and transportation-logistics systems, to select the technical components and to manage the operation of the system,
- to keep in operation vehicles and mobile machines serving the transportation process, to make the control systems operated, to take into consideration the environmental factors,
- to perform designing, organising and keeping in operation duties,
- to carry out public service and marketing activities.
BSc in Logistics Engineering
Length of study: 7 semesters

Program objectives: The aim of the study is to train logistics engineers, who will be able to maintain and operate corporate logistics and good transportation systems. They will know modern supply chains and networks, their management and organizational basics, and transport control processes and workflows. Related logistics control and IT systems basics are also acquired. The gained knowledge is sufficient to continue their education in the MSc programmes of the Faculty.

Specializations: From the 5th semester every student will participate in one logistics engineer specialization, which covers all specific areas of logistics, and prepares the further MSc integration and specializations, and/or the specific logistics operating engineer work.

Competences and skills: Possessing the basic certificate, the logistics engineers - taking into consideration also the prospective specialisations - become able:

- to define the equipment necessary to realize logistics systems and processes,
- to organize, arrange, control logistics systems in a safe and environmentally-friendly way,
- to perform the basic engineering tasks related to the design, manufacture and repair, as well as the organization of material handling machines,
- to provide and organize the official work related to the installation and operation of logistics machinery.

Actually, due to changes in basic training (BSc) our Faculty can ensure training in English with tuition fee for the time being only part-time (attending term at other faculties, training exchange students). The list of optional subjects in the given term is on website: http://transportation.bme.hu/for-students/courses/

Description of MSc training

MSc in Vehicle Engineering
Length of study: 4 semesters

Program objectives: The 4 semester long master education programme is a continuation of the bachelor vehicle engineering studies. Our aim is to provide the required knowledge to graduates, required to manage development, design, dimensioning, manufacturing and analyzing internal processes of different vehicles. The students will also be prepared to management tasks and to creatively participate in Research & Development related tasks. These studies prepare students for our PhD programmes.

Specializations: Automotive vehicle engineer, aerospace vehicle engineer, naval vehicle engineer, railway vehicle engineer, Mobile machinery and construction equipment engineer, automated material handling system, Vehicle manufacturing and repairing engineer, Vehicle system engineer, Road and traffic safety engineer, Vehicle automation engineer, Vehicle structure engineer.

Competencies and skills: Possessing the MSc degree, vehicle engineers are able:

- to integrate a system oriented and process analysing way of thinking directed on vehicles and mobile-machinery, having a role in transportation processes,
- connected with the specialization selected, to carry out assessments, to develop, design, organise and control complex systems of vehicle technology.

Basic specialization accepted to the input without any conditions:

- basic specialization of transportation engineering

Basic specialization accepted to the input under given conditions:

- mechanical engineering;
- mechatronics engineering;
- military staff, and safety technology engineering;
- agricultural and food industrial engineering;
- engineering informatics.
MSc in Transportation Engineering
Length of study: 4 semesters

Program objectives: The 4 semester long master education programme is a continuation of the bachelor studies. Our aim is to train graduates, who will be able to analyze, plan, organize and control transport related processes in an integrated way considering economic, safety, environmental and human resource aspects. Graduates will be able to deal with tasks of transport administration and transport authorities, choice and operation of vehicles and facilities of passenger and good transportation systems and related infrastructural, control and IT system elements. The students will also be prepared to higher management tasks, to creatively participate in research & development tasks. These studies prepare students for our PhD programme.

Specializations: Transportation systems, Transportation automatization, Transportation engineer manager, Freight forwarding management, Air Traffic Management.

Competencies and skills: Possessing the MSc degree, transportation engineers are able:
- to recognise connections between systems and processes of transportation, to evaluate and to handle them in the framework of system theory, as well as to apply the related principles and methods,
- connected with the specialization selected, to carry out state assessments, to develop, design, organise and control complex transportation systems.

Basic specialization accepted to the input without any conditions:
- basic specialization of transportation engineering

Basic specializations accepted to the input under given conditions:
- mechanical engineering;
- mechatronics engineering;
- military staff and safety technology engineering;
- civil engineering;
- engineering informatics;
- light industry engineering.

MSc in Logistics Engineering
Length of study: 4 semesters

Program objectives: The 4 semester long MSc study is a continuation of the BSc studies. Our aim is to train graduates, who will be able to plan, organize and control corporate logistics systems, good transport systems and supply and distribution networks. Furthermore they will be able to join to developing logistics systems related machines and tools. The students will also be able to deal with complex logistics system modeling and optimization, they understand operation and planning principles of corporate logistics systems, distribution networks and supply chains. The students will also be prepared to manage leading tasks, to creatively participate in R&D related problem, and continue their studies later on our PhD programme.

Specializations: Corporate logistics and operations planning, Technical logistics, Freight forwarding management.

Competencies and skills: Possessing the MSc degree, logistic engineers are able to interconnect the component-processes of logistic systems and the component-units performing the physical realisation of the former relationships.

Basic specialization accepted to the input without any conditions:
- basic specialization of transportation engineering

Basic specialization accepted to the input under given conditions:
- mechanical engineering;
- mechatronics engineering;
- military staff, and safety technology engineering;
- agricultural and food industrial engineering;
- engineering informatics;
- light industry engineering.

Admittance to master courses (MSc) ensured by the announced training, partly in English language, is possible in case of meeting the input conditions, passing entrance examination and in case of at least 5 students’ participation.
Description of the Doctoral training

The highest level of the faculty’s education is represented by the Kandó Kálmán Doctoral School, where the PhD students are being prepared for scientific research and a possible career as a professor and researcher. The programme’s tasks deal with transportation, vehicle industry and logistics related questions, which actual topics are frequently updated.

The 4 year program lets the students take part in professional subjects and courses, teaching activities and individual scientific research tasks. The programme will deepen the students’ knowledge in 3 main fields: high level natural science, foundation of profession and specialist subjects in vehicles and mobile machines, transportation and logistics sciences. Furthermore they will gather knowledge through specific optional subjects.

The high quality of the education is guaranteed by the well recognized core members of the programme. Research activity is being lead by a professional supervisor, and the PhD students will show their results through their publications and later in their dissertation.

Curriculum of MSc in Vehicle Engineering

<table>
<thead>
<tr>
<th>Subject</th>
<th>Name</th>
<th>Code</th>
<th>Lecture / Practice / Laboratory / Exam type / Credit</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Driver Assistance Systems</td>
<td>BMEKOGGM657</td>
<td>2/0/2/v/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Flight Theory</td>
<td>BMEKORHM620</td>
<td>2/1/v/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced materials and technologies</td>
<td>BMEKOGGM601</td>
<td>3/2/v/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aircraft design and production I.</td>
<td>BMEKOVRM629</td>
<td>2/0/2/v/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer aided design</td>
<td>BMEKOJSM605</td>
<td>2/0/2/v/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control theory</td>
<td>BMEKOAM142</td>
<td>2/1/v/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environment Sensing in the Vehicle Industry</td>
<td>BMEKOAM656</td>
<td>2/0/2/v/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrumental tests for motor vehicles, measurement technology</td>
<td>BMEKOGGM668</td>
<td>0/0/4/v/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machine Intelligence</td>
<td>BMEKOALM644</td>
<td>2/2/v/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurement techniques and signal processing in vehicles</td>
<td>BMEKOAM653</td>
<td>4/0/2/v/6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanics of superstructure materials</td>
<td>BMEKOJSM663</td>
<td>2/0/2/v/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numerical methods</td>
<td>BMEKOVM121</td>
<td>2/0/1/v/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation of railway vehicles</td>
<td>BMEKOVJM409</td>
<td>2/0/0/v/3</td>
<td></td>
<td>VJM402 VJM109</td>
</tr>
<tr>
<td>Practice in technology of manufacturing and materials in vehicle industry</td>
<td>BMEKOGGM648</td>
<td>0/2/v/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Programming in C and Matlab</td>
<td>BMEKOAM603</td>
<td>2/2/v/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Railway vehicle system dynamics</td>
<td>BMEKOVRM608</td>
<td>3/1/v/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Requirements for superstructure designers</td>
<td>BMEKOJSM662</td>
<td>0/2/v/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Road safety, legislative environment, human factors</td>
<td>BMEKOGGM653</td>
<td>2/0/v/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ship design</td>
<td>BMEKOVRM615</td>
<td>2/0/v/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulation of technical systems</td>
<td>BMEKOALM645</td>
<td>2/1/v/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface Engineering</td>
<td>BMEKOGGM647</td>
<td>2/0/v/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suspension design</td>
<td>BMEKOJSM613</td>
<td>2/0/v/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theory of Ships III.</td>
<td>BMEKOVRM616</td>
<td>2/1/v/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle operation, reliability and diagnostics</td>
<td>BMEKOVRM602</td>
<td>2/0/v/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accident analysis I., forensic processes</td>
<td>BMEKOGGM654</td>
<td>2/0/2/v/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aircraft analysis I.</td>
<td>BMEKOVRM633</td>
<td>2/0/2/v/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aircraft design and production II.</td>
<td>BMEKOVRM630</td>
<td>2/0/2/v/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computational fluid- and thermodynamics</td>
<td>BMEKOVRM606</td>
<td>2/0/2/v/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction of vehicle manufacturing systems I.</td>
<td>BMEKOGGM649</td>
<td>2/0/2/v/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design methods of drive systems</td>
<td>BMEKOALM646</td>
<td>2/0/1/v/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design of material handling machine design</td>
<td>BMEKOAM627</td>
<td>2/1/v/5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design of pleasure craft</td>
<td>BMEKOVRM625</td>
<td>2/1/v/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diesel and electric traction</td>
<td>BMEKOVRM610</td>
<td>3/1/v/5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Curriculum of MSc in Vehicle Engineering (Contd.)

<table>
<thead>
<tr>
<th>Subject</th>
<th>Lecture / Practice / Laboratory / Exam type / Credit</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Code</td>
<td>1</td>
</tr>
<tr>
<td>Discrete Control Design</td>
<td>BMEKOAM658</td>
<td>2/0/2/v/4</td>
</tr>
<tr>
<td>Dynamics of vehicle, active- and passive</td>
<td>BMEKOJM641</td>
<td>2/0/2/v/4</td>
</tr>
<tr>
<td>safety</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronics – electronic measurement systems</td>
<td>BMEKOAM103</td>
<td>2/1/0/v/4</td>
</tr>
<tr>
<td>Engine design I.</td>
<td>BMEKOGGM670</td>
<td>2/0/2/v/4</td>
</tr>
<tr>
<td>Fixing and sealing</td>
<td>BMEKOGGM650</td>
<td>2/0/2/v/4</td>
</tr>
<tr>
<td>Machines of construction material production</td>
<td>BMEKOALM672</td>
<td>2/2/1/v/5</td>
</tr>
<tr>
<td>Mechatronics, microcomputers</td>
<td>BMEKOAM604</td>
<td>2/0/2/v/4</td>
</tr>
<tr>
<td>Ship motions</td>
<td>BMEKOVRM624</td>
<td>2/1/1/v/4</td>
</tr>
<tr>
<td>Structural vibrations</td>
<td>BMEKOGJM646</td>
<td>2/0/2/v/4</td>
</tr>
<tr>
<td>Structure analysis</td>
<td>BMEKOJSM609</td>
<td>2/0/2/v/4</td>
</tr>
<tr>
<td>Superstructure preliminary design</td>
<td>BMEKOJSM646</td>
<td>2/0/2/v/4</td>
</tr>
<tr>
<td>System technique and analysis</td>
<td>BMEKOVRM129</td>
<td>2/0/2/v/4</td>
</tr>
<tr>
<td>Traction mechanics</td>
<td>BMEKOVRM619</td>
<td>1/0/0/v/3</td>
</tr>
<tr>
<td>Transmission system design</td>
<td>BMEKOGJM612</td>
<td>2/0/2/v/4</td>
</tr>
<tr>
<td>Vehicle automation systems</td>
<td>BMEKOGGM659</td>
<td>2/0/2/v/4</td>
</tr>
<tr>
<td>Vehicle system dynamics and control</td>
<td>BMEKOVRM636</td>
<td>3/2/1/v/8</td>
</tr>
<tr>
<td>Accident analysis II., simulation methods</td>
<td>BMEKOGGM655</td>
<td>2/0/2/v/5</td>
</tr>
<tr>
<td>Analysis of Aircraft II.</td>
<td>BMEKOVRM632</td>
<td>3/0/2/v/7</td>
</tr>
<tr>
<td>Computer aided manufacturing</td>
<td>BMEKOGGM618</td>
<td>2/0/2/v/4</td>
</tr>
<tr>
<td>Construction machinery design - project</td>
<td>BMEKOALM674</td>
<td>2/2/0/v/5</td>
</tr>
<tr>
<td>Construction mechanization project planning</td>
<td>BMEKOALM673</td>
<td>1/2/1/v/5</td>
</tr>
<tr>
<td>Construction of vehicle manufacturing systems II</td>
<td>BMEKOGGM651</td>
<td>2/0/2/v/5</td>
</tr>
<tr>
<td>Design and testing of railway vehicle systems</td>
<td>BMEKOVRM607</td>
<td>4/0/2/v/10</td>
</tr>
<tr>
<td>Design methods of material handling systems</td>
<td>BMEKOALM642</td>
<td>1/2/1/v/5</td>
</tr>
<tr>
<td>Design of material handling machines - project</td>
<td>BMEKOALM643</td>
<td>2/0/0/v/5</td>
</tr>
<tr>
<td>Design of Vehicle Automation Systems</td>
<td>BMEKOAM661</td>
<td>2/0/4/v/7</td>
</tr>
<tr>
<td>Engine design II.</td>
<td>BMEKOGGM671</td>
<td>2/0/2/v/5</td>
</tr>
<tr>
<td>Measurement systems in vehicle manufacturing</td>
<td>BMEKOGGM652</td>
<td>2/0/2/v/5</td>
</tr>
<tr>
<td>Mechatronic design of vehicle systems</td>
<td>BMEKOGGM622</td>
<td>2/0/2/v/5</td>
</tr>
<tr>
<td>Production process quality assurance in the vehicle industry</td>
<td>BMEKOGGM611</td>
<td>2/0/0/v/2</td>
</tr>
<tr>
<td>Project</td>
<td>BMEKOVRM633</td>
<td>0/1/2/v/3</td>
</tr>
<tr>
<td>Project work</td>
<td>BMEKOVRM628</td>
<td>0/1/1/v/2</td>
</tr>
<tr>
<td>Project management in automotive industry</td>
<td>BMEKOKKM617</td>
<td>2/0/0/v/2</td>
</tr>
<tr>
<td>Reliability, Safety and Security in the Vehicle Industry</td>
<td>BMEKOAM660</td>
<td>2/0/0/v/3</td>
</tr>
<tr>
<td>Research and development process in the vehicle industry</td>
<td>BMEKOGGM614</td>
<td>2/0/0/v/2</td>
</tr>
<tr>
<td>Ship hydrodynamics</td>
<td>BMEKOVRM626</td>
<td>1/1/1/v/4</td>
</tr>
<tr>
<td>Ship strength</td>
<td>BMEKOVRM621</td>
<td>1/1/1/v/4</td>
</tr>
<tr>
<td>Superstructure control technics</td>
<td>BMEKOJSM646</td>
<td>2/0/2/v/5</td>
</tr>
<tr>
<td>Vehicle evaluation, traffic environment</td>
<td>BMEKOGJM640</td>
<td>2/0/2/v/5</td>
</tr>
<tr>
<td>Vehicle simulation and optimisation</td>
<td>BMEKOVRM638</td>
<td>2/0/0/v/5</td>
</tr>
<tr>
<td>Vehicle superstructure design</td>
<td>BMEKOJSM667</td>
<td>2/0/2/v/5</td>
</tr>
<tr>
<td>Vehicle system informatics</td>
<td>BMEKOVM437</td>
<td>2/0/2/v/5</td>
</tr>
<tr>
<td>Thesis work</td>
<td></td>
<td>0/0/0/v/30</td>
</tr>
</tbody>
</table>

Curriculum of MSc in Vehicle Engineering (Contd.)
Curriculum of MSc in Transportation Engineering

<table>
<thead>
<tr>
<th>Subject</th>
<th>Code</th>
<th>Lecture / Practice / Laboratory / Exam type / Credit</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Code</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Control theory</td>
<td>BMEKOKAM142</td>
<td>2/1/0/3</td>
<td>-</td>
</tr>
<tr>
<td>Decision making methods</td>
<td>BMEKOKKM221</td>
<td>3/1/0/5</td>
<td>-</td>
</tr>
<tr>
<td>Intelligent transport systems</td>
<td>BMEKOKUM205</td>
<td>2/0/2/5</td>
<td>-</td>
</tr>
<tr>
<td>Mathematics MK</td>
<td>BMETE90MX59</td>
<td>2/2/0/4</td>
<td>-</td>
</tr>
<tr>
<td>Road Safety</td>
<td>BMEKOKKM222</td>
<td>2/1/0/3</td>
<td>-</td>
</tr>
<tr>
<td>Transport automation</td>
<td>BMEKOKAM202</td>
<td>2/1/0/4</td>
<td>-</td>
</tr>
<tr>
<td>Transport Economics</td>
<td>BMEKOKGM201</td>
<td>2/1/0/4</td>
<td>-</td>
</tr>
<tr>
<td>Air Traffic Management (ATM)</td>
<td>BMEKOVRM224</td>
<td>1/0/1/3</td>
<td>-</td>
</tr>
<tr>
<td>Communications, Navigation and Surveillance</td>
<td>BMEKOVRM226</td>
<td>2/1/0/3</td>
<td>-</td>
</tr>
<tr>
<td>(CNS I)</td>
<td>BMEKOGM215</td>
<td>4/0/0/6</td>
<td>KGM201 KGM201</td>
</tr>
<tr>
<td>Decision making methods</td>
<td>BMEKOKAM227</td>
<td>2/0/2/4</td>
<td>-</td>
</tr>
<tr>
<td>Intelligent transport systems</td>
<td>BMEKOKAM228</td>
<td>2/0/2/4</td>
<td>-</td>
</tr>
<tr>
<td>Mathematics MK</td>
<td>BMETE90MX59</td>
<td>2/2/0/4</td>
<td>-</td>
</tr>
<tr>
<td>Road Safety</td>
<td>BMEKOVRM231</td>
<td>2/0/0/3</td>
<td>-</td>
</tr>
<tr>
<td>Transport automation</td>
<td>BMEKOKAM232</td>
<td>2/0/2/4</td>
<td>-</td>
</tr>
<tr>
<td>Material handling and warehousing processes</td>
<td>BMEKOALM225</td>
<td>2/0/2/4</td>
<td>-</td>
</tr>
<tr>
<td>Meteorology</td>
<td>BMEKOKAM233</td>
<td>2/0/2/4</td>
<td>-</td>
</tr>
<tr>
<td>Modelling and control of vehicles and traffic systems</td>
<td>BMEKOVRM237</td>
<td>0/2/0/3</td>
<td>-</td>
</tr>
<tr>
<td>Numerical methods</td>
<td>BMEKOALM227</td>
<td>2/0/2/4</td>
<td>-</td>
</tr>
<tr>
<td>Transport automation</td>
<td>BMEKOKAM234</td>
<td>2/0/2/4</td>
<td>-</td>
</tr>
<tr>
<td>Engineering of transport automation systems</td>
<td>BMEKOALM228</td>
<td>2/0/2/4</td>
<td>-</td>
</tr>
<tr>
<td>Environmental effects of transport</td>
<td>BMEKOKAM235</td>
<td>2/0/2/4</td>
<td>-</td>
</tr>
<tr>
<td>Financing techniques in transportation</td>
<td>BMEKOKAM236</td>
<td>2/0/2/4</td>
<td>-</td>
</tr>
<tr>
<td>Forwarding Management 1</td>
<td>BMEKOKAM237</td>
<td>2/0/2/4</td>
<td>-</td>
</tr>
<tr>
<td>Forwarding Management 2</td>
<td>BMEKOKAM238</td>
<td>2/0/2/4</td>
<td>-</td>
</tr>
<tr>
<td>Forwarding marketing</td>
<td>BMEKOKAM239</td>
<td>2/0/2/4</td>
<td>-</td>
</tr>
<tr>
<td>Human resource management in transportation</td>
<td>BMEKOKAM240</td>
<td>2/0/2/4</td>
<td>-</td>
</tr>
<tr>
<td>Management of transport and logistic services</td>
<td>BMEKOKAM241</td>
<td>2/0/2/4</td>
<td>-</td>
</tr>
<tr>
<td>Passenger transportation</td>
<td>BMEKOKAM242</td>
<td>2/0/2/4</td>
<td>-</td>
</tr>
<tr>
<td>Project</td>
<td>BMEKOKAM243</td>
<td>2/0/2/4</td>
<td>-</td>
</tr>
<tr>
<td>Project management in transportation</td>
<td>BMEKOKAM244</td>
<td>2/0/2/4</td>
<td>-</td>
</tr>
<tr>
<td>Safety in air traffic control</td>
<td>BMEKOKAM245</td>
<td>2/0/2/4</td>
<td>-</td>
</tr>
<tr>
<td>Signal processing in transport</td>
<td>BMEKOKAM246</td>
<td>2/0/2/4</td>
<td>-</td>
</tr>
<tr>
<td>Supply and distribution processes</td>
<td>BMEKOKAM247</td>
<td>2/0/2/4</td>
<td>-</td>
</tr>
<tr>
<td>Trade, Financial, Accounting Techniques</td>
<td>BMEKOKAM248</td>
<td>2/0/2/4</td>
<td>-</td>
</tr>
<tr>
<td>Traffic flow</td>
<td>BMEKOKAM249</td>
<td>2/0/2/4</td>
<td>-</td>
</tr>
<tr>
<td>Thesis work</td>
<td>BMEKOKAM250</td>
<td>2/0/2/4</td>
<td>-</td>
</tr>
</tbody>
</table>

Compulsory refers to subjects that are mandatory for all students, whereas *Recommended* indicates additional recommended subjects.
Curriculum of MSc in Logistics Engineering

<table>
<thead>
<tr>
<th>Name</th>
<th>Code</th>
<th>Lecture / Practice / Laboratory / Exam type / Credit</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Control theory</td>
<td>BMEKOKAM122</td>
<td>2/1/1/v/5</td>
<td>-</td>
</tr>
<tr>
<td>Lean management</td>
<td>BMEKOALM122</td>
<td>2/1/0/v/4</td>
<td>-</td>
</tr>
<tr>
<td>Logistics controlling</td>
<td>BMEKOKKM130</td>
<td>2/0/0/v/3</td>
<td>-</td>
</tr>
<tr>
<td>Logistics information system planning</td>
<td>BMEKOALM121</td>
<td>2/0/2/v/5</td>
<td>-</td>
</tr>
<tr>
<td>Mathematics ML</td>
<td>BMET90MX60</td>
<td>2/2/0/v/5</td>
<td>-</td>
</tr>
<tr>
<td>Planning of extra-logistics networks</td>
<td>BMEKOALM137</td>
<td>2/1/0/v/4</td>
<td>-</td>
</tr>
<tr>
<td>Algorithm Design</td>
<td>BMEKOKAM126</td>
<td>2/0/2/v/5</td>
<td>-</td>
</tr>
<tr>
<td>Automation of logistics systems</td>
<td>BMEKOALM129</td>
<td>2/0/2/v/5</td>
<td>-</td>
</tr>
<tr>
<td>Demand planning and inventory management</td>
<td>BMEKOALM128</td>
<td>2/1/1/v/5</td>
<td>-</td>
</tr>
<tr>
<td>Enterprise logistics project 1.</td>
<td>BMEKOALM139</td>
<td>0/4/0/v/4</td>
<td>-</td>
</tr>
<tr>
<td>Forwarding Management 1</td>
<td>BMEKO KK132</td>
<td>2/2/0/v/5</td>
<td>-</td>
</tr>
<tr>
<td>Forwarding project 1.</td>
<td>BMEKO KK138</td>
<td>0/4/0/v/4</td>
<td>-</td>
</tr>
<tr>
<td>Logistics planning softwares</td>
<td>BMEKOALM136</td>
<td>0/0/2/v/3</td>
<td>-</td>
</tr>
<tr>
<td>Numerical optimization</td>
<td>BMEKOVRM134</td>
<td>3/0/1/v/5</td>
<td>-</td>
</tr>
<tr>
<td>Process planning</td>
<td>BMEKOALM131</td>
<td>2/1/0/v/3</td>
<td>-</td>
</tr>
<tr>
<td>Simulations planning</td>
<td>BMEKOALM135</td>
<td>1/1/1/v/3</td>
<td>-</td>
</tr>
<tr>
<td>Technical logistics project 1.</td>
<td>BMEKOALM133</td>
<td>0/4/0/v/4</td>
<td>-</td>
</tr>
<tr>
<td>Construction of logistics machinery</td>
<td>BMEKOALM124</td>
<td>2/1/0/v/3</td>
<td>-</td>
</tr>
<tr>
<td>Control of transport logistics</td>
<td>BMEKOALM141</td>
<td>2/0/1/v/3</td>
<td>-</td>
</tr>
<tr>
<td>Enterprise logistics project 2.</td>
<td>BMEKOALM143</td>
<td>0/7/0/v/7 ALM139</td>
<td>-</td>
</tr>
<tr>
<td>Forwarding Management 2</td>
<td>BMEKO KK133</td>
<td>3/1/1/v/5 KKM132</td>
<td>-</td>
</tr>
<tr>
<td>Forwarding marketing</td>
<td>BMEKO KK135</td>
<td>1/0/2/v/4</td>
<td>-</td>
</tr>
<tr>
<td>Forwarding project 2.</td>
<td>BMEKO KK1342</td>
<td>0/2/0/v/2 KKM338</td>
<td>-</td>
</tr>
<tr>
<td>Integrated material flow systems</td>
<td>BMEKOALM132</td>
<td>2/1/0/v/4</td>
<td>-</td>
</tr>
<tr>
<td>Planning of plant logistics systems</td>
<td>BMEKOALM127</td>
<td>2/2/0/v/5 ALM131 ALM335</td>
<td>-</td>
</tr>
<tr>
<td>Planning of warehousing systems</td>
<td>BMEKOALM123</td>
<td>2/2/0/v/5 ALM131 ALM335</td>
<td>-</td>
</tr>
<tr>
<td>Production planning & scheduling</td>
<td>BMEKOALM129</td>
<td>2/0/1/v/4 ALM1328</td>
<td>-</td>
</tr>
<tr>
<td>Technical logistics project 2.</td>
<td>BMEKOALM140</td>
<td>0/7/0/v/7 ALM133</td>
<td>-</td>
</tr>
<tr>
<td>Trade, Financial, Accounting Techniques</td>
<td>BMEKO KK138</td>
<td>1/1/1/v/3</td>
<td>-</td>
</tr>
<tr>
<td>Thesis work</td>
<td>0/30/0/v/30</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Subject</td>
<td>Code</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>---</td>
<td></td>
</tr>
</tbody>
</table>
| **Advanced Driver Assistance Systems** | BMEKOGGM657| *Dr. Zsolt Szalay*
(4 credits) |
| **Advanced Flight Theory** | BMEKORHM620| *Dr. József Rohács*
| **Advanced materials and technologies** | BMEKOGGM601| *Dr. Krisztián Bán*
(5 credits) |
| **Aircraft design and production I.** | BMEKOVRM629| *Dr. Dániel Rohács*
Aircraft development philosophies.: the role of aviation in economy, major problems of aviation and aeronautical industry, goodness factors and their changes during development processes, general development process, technology transfer, development and design methods, control of the development processes. Computer aided design processes. Specific aspects of using the CATIA. Surface modeling. Development and design of the aircraft gas turbines. and their parts. (4 credits) |
| **Computer aided design** | BMEKOJSM605| *Dr. László Lovas*
Control theory
BMEKOKAM142
Dr. József Bokor
The course provides deepening of knowledge in control theory. Provides theoretical knowledge, and discusses modern tools, which are necessary in later engineering practice. This is introduced through different examples, taken from vehicle and transportation systems. (3 credits) |
| **Environment Sensing in the Vehicle Industry** | BMEKOKAM656| *Dr. Tamás Bécsi*
The course aims the introduction of the main sensor technologies of the vehicle industry. Among these, Ultrasonic, radar, Lidar, and camera based methods are discussed. (4 credits) |
| **Instrumental tests for motor vehicles, measurement technology** | BMEKOGGM668| *Dr. Bálint Szabó*
Based on the requirements of the current vehicle engineer education this subject gives a deep knowledge on methods of vehicle tests and measurement systems. Methods and tools of vehicle dynamical tests are introduced. It focuses on the dynamical measurements of the vehicle subsystems like brake system, steering system and the suspension. According to the present requirements of vehicle developments the demonstration of the testbench based HIL tests are part of the education. Besides the vehicle dynamical measurements, it is essential to get familiar with the fuel consumption measurements and with the emission tests performed on roller test bench. To introduce the modern engine testing methods, engine test bench measurements will be carried out during the course. Alongside the development related test, the latest diagnostic measurement methods will be introduced as well. (4 credits) |
| **Machine Intelligence** | BMEKOALM644| *Dr. Tamás Szirányi*
This subject teaches the students basics of machine intelligence in order to understand and be capable to apply them. (4 credits) |
| **Measurement techniques and signal processing in vehicles** | BMEKOKAM635| *Dr. Alexandros Soumelidis*
Provides knowledge about the instrumental measurement and evaluation of the vehicle parameters. Furthermore introducing sensing and measurement principles, signal processing, traffic measurement. Theory of sensorfusion, sensor networks of the vehicle dynamics measurement. State estimation, parameter estimation, Kalman-filter. Applications in vehicle control systems. (8 credits) |
| **Mechanics of superstructure materials** | BMEKOJSM663| *Dr. Péter Béda*
Modeling of materials. Role of the constitutive equation, principles of its building. Types of material laws, typical behavior issue from experiments. Presentation and study of elastic and plastic bodies. Rheological models. Application examples. (4 credits) |
| **Numerical methods** | BMEKOVRM121| *Dr. Rohács József*
Operation of railway vehicles

BMEKOVJM409
Dr. József Csibá

Service processes for railway vehicles. Vehicle input, the actual service timing and vehicle output as components of a random service process. Inventory problems in the operation of railway vehicles, the theory of minimum cost-storing and purchase. Statistical theory of the operating system of railway vehicles, reliability-based operation/maintenance (RCM system). Railway vehicle diagnostics, vehicle diagnostics and stationary equipments, stations. Systems for identifying of vehicles and their operational modes. Operational properties of braked trains, braking-difficulties, dynamical- and thermal processes. (3 credits)

Practice in technology of manufacturing and materials in vehicle industry

BMEKOGGM648
Dr. Krisztián Bán

(4 credits)

Programming in C and Matlab

BMEKOKAM603
Dr. Tamás Bécsi

The course aims the introduction to programming in C and Matlab languages. (4 credits)

Railway vehicle system dynamics

BMEKOVRM608
Dr. Zoltán Záboi

Requirements for superstructure designers

BMEKOJS662
Dr. Péter Béda

Manufacturer’s requests for vehicle superstructure designers. Manufacturer’s rules for superstructures and assembling. National and international laws. Preparation for manufacturing. (4 credits)

Road safety, legislative environment, human factors

BMEKOGGM653
Dr. Gábor Melegh

Legal studies: an extract from the constitutional law, substantive and procedural civil law, criminal law, criminal procedural law, driving offences, issues of damages claims. Human factors in road traffic: personality characteristics, behaviours, human health protection, generational problems, effects of weather and seasons, special related questions of vegetation and fauna, damages caused by wild animals. Personal injuries: the human body, physiological particularities, classification of injuries, examination of accidents in the light of injuries, examination of blood alcohol concentration, examples of medical investigation of accidents. (4 credits)

Ship design

BMEKOVRM615
Dr. Győző Simongáti

The course aims at introduction of the process of ship design, the design spiral, determination of main particulars, lines planning, optimisation techniques, conceptual design, preliminary design methods, tonnage calculation, etc. (5 credits)

Simulation of technical systems

BMEKOALM645
Dr. Gábor Bohács

The subject introduces to the students software background which can be used as a virtual reality to support engineering decisions. (4 credits)

Surface Engineering

BMEKOGGM647
Dr. Tamás Markovits

Suspension design

BMEKOGJM613
Dr. Bálint Szabó

Analysis of forces acting on wheel using modern tyre-models, knowing objective functions of static and dynamic geometrical parameters of tyres, necessary for design. Geometrical design of tyre suspension, structural design of each parts of suspension (rods, arms, ball joints, rubber mountings). Vibration analysis of vehicle, geometrical and structural design of elements of suspension (coils, springs, shock absorbers, stabilizers, motion boundary elements) in regard to requirement systems of suspensions. Dynamical analysis of braking vehicle in order to determine design requirements; methods for proportioning brake force between axles; design of conceptual schema of brake system; geometrical, structural, thermo- and fluid dynamical design of each parts. Determination of initial data needed to design the steering system using dynamical analysis of steering; design of steering mechanism; geometrical and structural design of elements of steering systems (tie rod, track rod, steering gear, steering wheel and axle, ball joints). (4 credits)

Theory of Ships III.

BMEKOVRM616
Dr. Győző Simongáti

The aim of the course is to introduce the special cases of stability to the students. Topics are: deterministic and probabilistic damaged stability methods, grounding, docking, stability of floating cranes, split barges. (3 credits)
Vehicle operation, reliability and diagnostics

BMEKOVRM602
Dr. József Csiba

Accident analysis I., forensic processes

BMEKOGGM654
Dr. Gábor Melegh
Technical causes of road traffic accidents, malfunctions of vehicles and engines; the most occurring malfunctions of vehicles and its engines, causing great damages. Identifying the root causes of accident from incurred damages, ascertainment of the technical responsibility, conclusions, options of accident avoidances. Role of vehicles, explanation of technical malfunctions, analysis of road traffic accidents occurred for technical reasons, contribution of subjective causes. Evaluation of accident forms: Main forms of accident and conclusions deductible from conditions after accident. Accidents attendant on hitting pedestrians, fundamental calculation methods, evaluation of hitting pedestrian overstepping form covering, accidents occurred in reduced visibility, experimental reconstruction of traffic accidents. Vehicle collision: substantial formulas of crashes, crash-calculation by analytical and graphical methods; deformations of vehicles and pictures of damages, energy grid. (4 credits)

Aircraft analysis I.

BMEKOVRM631
Dr. Károly Beneda
The aim of the course is to introduce the analysis techniques of aircraft and powerplants. (4 credits)

Aircraft design and production II.

BMEKOVRM630
Dr. Balázs Gáti
Aircraft Design II. (4 credits)

Computational fluid- and thermodynamics

BMEKOVRM606
Dr. Árpád Veress
The goal of the present subject is to prepare students for the state of the art application of CFD calculation methods in the vehicle engineering with including thermodynamics and heat transfer. (4 credits)

Construction of vehicle manufacturing systems I.

BMEKOGGM649
Dr. Tamás Markovits
(4 credits)

Design methods of drive systems

BMEKOALM646
Dr. Gábor Bohács
This subject aims to introduce the construction and materials handling machines’ specific drive systems, construction and examination methodology. (3 credits)

Design of material handling machine design

BMEKOKAM627
Dr. Gábor Bohács
Design and norming of material handling machines. Capacity and power requirement calculation for machines of bulk materials. Design of material handling machines for unit loads, especially forklifts and cranes. (5 credits)

Design of pleasure craft

BMEKOVRM625
Dr. Győző Simongáti
The course aims at introduction of the specialities pleasure craft design. (4 credits)

Diesel and electric traction

BMEKOVRM610
Dr. András Szabó
Design properties of railway Diesel engines, dynamical processes of injection and control systems. Turbocharging systems of railway diesel engines. Design properties of Diesel-hydraulic and Diesel-electric powertrain system design, machine-group optimization, transient operation processes. Drive dynamics of electric traction units, electro-mechanical, controlled systems. Analysis of the work done and energy-consumption, hydraulic/electro-dynamic braking of trains of Diesel and electric traction units, and their optimization. (5 credits)

Discrete Control Design

BMEKOKAM658
Dr. Péter Gáspár
The course aims the presentation of discrete control theory. Besides the theoretical and mathematical design aspects, implementation issues are also discussed. (4 credits)

Dynamics of vehicle, active- and passive safety

BMEKOGJM641
Dr. Gábor Melegh
Analysis of the forces acting on the wheels, state of the art tyre-models, static and dynamic geometric characteristics of tyre from the point of view of traffic safety. Analysis of force and moment conditions of transmission systems, examination of dynamic parameters of mechanical and hydromechanical torque converter. Geometry of tyre suspension, load of each elements of suspension. Vibration theory of vehicle, parts of suspension. Dynamic analysis of vehicle braking; methods for proportioning brake force between axles of vehicle; conceptual schema of different types of brake systems; geometrical-, mechanical-, heat-
and hydrodynamics loads of single part.
Dynamical analysis of steering, geometrical and mechani-
cal design of parts os steering systems (tie rod, track rod,
steering gear, steering wheel and axle, ball joints).
Review of software solutions applicable for making vehicle
dynamic models; examination of longitudinal and trans-
verse vehicle dynamics, methods for controlling vehicle dy-
namics. Dynamical examination and modelling of vehicle’s
roll over process.
Active and passive components of vehicle safety: control
systems of vehicle dynamics, introducing systems which are
suitable to mitigating consequences of accidents. Detailed
review of sensors and actuators which are parts of these
systems. Uses of data stored in these systems’ ECUs for re-
construction of an accident. (4 credits)

Electronics – electronic measurement sys-
tems

BMEKOKAM103
Dr. Géza Szabó
The subject gives basic knowledge of electronics and elec-
tronic measurements and their application in different areas
of transportation. It summarizes the operational modes of
basic components and basic circuits and describe how one
can design and apply them. It gives an overview of electric
and mechanical measurements and how the results of mea-
surements can be processed
(4 credits)

Engine design I.

BMEKOGGM670
Dr. Huba Németh
Grouping of engine simulation methods. Wave action en-
gine models and its equations. Flow filed, pressure drop
and heat transfer in the intake and exhaust systems. Flow
splits. Flow on intake and exhaust valves. Constructional
and geometrical design of combustion chambers. Set up of
bore-stroke ratio, valve diameters, and compression ration
values. Modelling of combustion processes, and its main
parameters. Wall heat transfer models. Mechanic losses and
friction models. Determination of charger pressure and fuel
rate for given performance targets. Set up of the charger
and its cooperation with the engine. Reduced charger maps.
Control of charging systems.
Mechanical and thermal loads of the reciprocating engine
pistons. Geometric and construction design of pistons. Wrist
pin design. Dimensioning methods. (4 credits)

Fixing and sealing

BMEKOGGM650
Dr. Krisztían Bán
(4 credits)

Machines of construction material produc-
tion

BMEKOALM672
Dr. Gábor Bohács
Computer aided construction of crushing machines. Mo-
tion equations of vibrating sieves. Construction of concrete
mixers. Reinforcing steel processing equipment sizing and
system control features. (5 credits)

Mechatronics, microcomputers

BMEKOKAM604
Dr. Péter Gáspár
Introducing the modern computer systems and the operat-
ing principles of robots. Numeral systems CPU arithmet-
ics, operations and algorithms with binary numbers. CPU
architectures, tasks and operation. Computer networks:
protocols, devices for wired and wireless communication.
(4 credits)

Ship motions

BMEKOVRM624
Dr. Gyöző Simongáti
The course aims to introduce students to the dynamics and
transient phenomena of ship motions, and to the dynamics
of equipments which may effect on ship motions. (4 cred-
its)

Structural vibrations

BMEKOSM665
Dr. Péter Béda
The second order Lagrange equation equation for holon-
omic and scleronomic conservative systems. The exis-
tence of stable equilibrium. Small oscillations, frequencies
approximate definition. Vibrations of rods, axes, strings and
membranes. Basics of modal analysis. Methods for nonlin-
ear oscillation problems. (4 credits)

Structure analysis

BMEKOSM609
Dr. Péter Béda
Theory and practice of the finite element method. Linear,
estatic and plastic material modeling. Mechanical and ther-
amal analysis. Eigenfrequencies and vibrations. Topological
structure optimisation. Study and verification of the opti-
mized model. (4 credits)

Superstructure preliminary design

BMEKOSM664
Dr. László Lovas
Construction, special links. Connections among square
tubes, sheet metal and elastic covers. Connection between
vehicle frame and rigid superstructure with given function.
(4 credits)

System technique and analysis

BMEKOVRM129
Dr. István Zobory
Vehicle and machine analysis using system theoretical ap-
proach. System characterisation by means of graphs. Hi-
erarchy of system structures: elements, element-groups,
 machine, machine group. Characterisation of complex en-
geineering systems by block-diagrams, structure graphs and
signal-flow graphs. Description of the system connections.
Construction of the input-output system equations by using
the system operator. Application of Lagrangean and Ham-
iltonian procedure. The general theorey of linear dynamic
systems. Weighting function, transition function in the time
domain. Convolution theorem. Complex frequency func-
tion in the frequency domain. Periodic, aperiodic and sta-
tionary stochastic excitations, wiht SISO and MIMO sys-
tems. Determination of the system response. Analysis of the
coherency conditions. (4 credits)
Traction mechanics

BMEKOVRM619

Dr. István Zobory

Factors of train motion. Tactive effort, braking force, track force. The tactive and braking forces applied in the control system influencing the torque conditions of the rotating components. Determining the train-weight that can be started, the construction Koreff-figure. Detreming the speed-timing diagrams by means of simulation using dynamical models. Taking into account the limit force that can be transferred through the rolling contact, without macroscopic sliding. The longitudinal dynamics of trains. Dynamics of train-tearing. Dynamics of special train motions: shunting, marshalling, hump. Energy demand of train motion, simulation of energy consumption with Diesel- and electric traction. Outlook to the sphere of problems of energy optimum train control, basic principle for the application of traction and braking forces, the numerical layout of the optimum train control. (3 credits)

Transmission system design

BMEKOGJM612

Dr. Huba Németh

Main parameters of vehicle mechanics. Construction of an arbitrary selected transmission component (clutch, gearbox or final drive), set-up of functional dimension based on vehicle dynamic calculations, geometrical construction of all components, structural dimensioning of gears, shafts and bearings for load and lifetime, construction and dimensioning of actuation mechanisms, design of housings and fixation points. (4 credits)

Vehicle automation systems

BMEKOGGM659

Dr. Zsolt Szalay

(4 credits)

Vehicle system dynamics and control

BMEKOVRM636

Dr. István Zobory

Analysis of dynamical models apt for examining the main motion of vehicles and vehicle-strings, as well as traffic flows. The non-linear dynamic model of the force transfer in rolling contact with regard to stochasticity coming from tribological properties. Motion equations of lumped parameter models capable for vibrations describing vehicle system. The forces and motion excitation, as well as parametric excitations. The stochastic ordinary differential equation system of the discrete dynamical system. Construction of motion equation systems of distributed parameter vehicle systems. The stochastic partial differential equation system of the distributed parameter dynamical system. The vehicle dynamical systems as a controlled or regulated section. Formulation of some typical vehicle dynamical task for control, with operation-technical explanation of the control signals. The vehicle control problem formulated by model based methods. Methods apt for designing vehicle control. Failure detecting in the vehicle control system. Design of vehicle control of reconfiguring and fault-toleranting character. Design of integrated control and inspection control. Case studies concerning controlled vehicle dynamical systems. (8 credits)

Accident analysis II., simulation methods

BMEKOGGM655

Dr. Gábor Melegh

Description of crash-models used in software solutions for accident reconstruction. Examination and analysis of complete regular and irregular vehicle motion process with simulation methods. Specifying the parameters which are necessary for simulation; confinement the circle of questions answerable by available parameters and data in a concrete case. Interpretation of probabilistic ascertainments. Parameter sensitivity analysis of simulation results. Evaluation, analysis and explanation of results provided by simulation software; plausibility of results. (5 credits)

Analysis of Aircraft II.

BMEKOVRM632

Dr. Balázs Gáti

(7 credits)

Computer aided manufacturing

BMEKOGGM618

Dr. Zoltán Pál

(4 credits)

Construction machinery design - project

BMEKOALM674

Dr. Gábor Bohács

Theory of mechanical construction of the building machines. Handling special load cases of the building industry’s tasks. Preparation of a complex task relating construction machines. (5 credits)

Construction mechanization project planning methods

BMEKOALM673

Dr. Gábor Bohács

Management of construction projects from mechanization aspects. Compilation of machine chains and systems. Capacity planning and scheduling. Determining operational parameters of earthwork machines and other construction machinery. (5 credits)

Construction of vehicle manufacturing systems II.

BMEKOGGM651

Dr. János Takács

(5 credits)

Design and testing of railway vehicle systems

BMEKOVRM607

Dr. András Szabó

Design methods of material handling systems

BMEKOALM642
Dr. Gábor Bohács

Characteristics of structure and operation of material handling systems. Mechanical connections and communication issues among the systems' components. Identification methods for bottlenecks. Planning operational strategy of material handling system. Safety in material handling systems. (5 credits)

Design of material handling machines - project

BMEKOALM643
Dr. Gábor Bohács

During the classes students learn most relevant issues of materials handling equipments’ mechanical construction. Construction of a selected materials handling machine is also carried out by students. (5 credits)

Design of Vehicle Automation Systems

BMEKOKAM661
Dr. Tamás Bécsi

The course aims the strengthening of project design skills through a large individual student project. (7 credits)

Engine design II.

BMEKOGGM671
Dr. Huba Németh

Measurement systems in vehicle manufacturing

BMEKOGGM652
Dr. Pál Bánlaki

Mechatronic design of vehicle systems

BMEKOGGM622
Dr. Zsolt Szalay

Production process quality assurance in the vehicle industry

BMEKOGGM611
Dr. Zsolt Stukovszky

(2 credits)

Project

BMEKOVRM633
Dr. Árpád Veress

In this subject the students have the possibility either to work as a trainee at an aircraft design office or get involved in a project running at our department. (3 credits)

Project work

BMEKOVRM628
Dr. Győző Simongáti

In this subject the students have the possibility either to work as a trainee at a ship design office or get involved in a project running at our department. (2 credits)

Project management in automotive industry

BMEKOKKM617
Zoltán Nagy

Project management can play an important role in the current wave of product development reengineering taking place in the automotive industry. In this course those special project management processes and tools can be studied which are necessary during automotive product development. (2 credits)

Reliability, Safety and Security in the Vehicle Industry

BMEKOKAM660
Dr. Balázs Sághi

The aim of the course is to provide the students with theoretical and practical knowledge about the approach and methods for designing reliable, safe and secure vehicle systems. (3 credits)

Research and development process in the vehicle industry

BMEKOGGM614
Dr. Zsolt Stukovszky

(2 credits)

Ship hydrodynamics

BMEKOVRM626
Dr. Győző Simongáti

The subject aims to introduce the basic analytical and numerical methods for calculation of ship resistance, water velocity and pressure distribution around hull. International and practical recommendations for numerical calculations of ship hydrodynamics. (4 credits)

Ship strength

BMEKOVRM621
Dr. Győző Simongáti

The course aims to explain numerical methods for calculating ship strength, and to introduce the verification calcula-
tion methods of ship strength according to the legal regu-
larations, international standards and classification societies.
(4 credits)

Superstructure control technics

BMEKOJSM666

Dr. Ferenc Pápai

Traditional hydraulic drives. Electrohydraulic drives, sen-
sors, actuators. Presentation of the onboard electronic de-
vices. Definition of stability and overload criteria. Accident
prevention. (5 credits)

Vehicle evaluation, traffic environment

BMEKOGJM640

Dr. Gábor Melegh

Students know the basics tasks and expectations connect-
ed to making damage survey, determination of the repair
costs and depreciation after repairs (or betterment). They
are informed of the related disciplines, which directly or
indirectly connected to these questions. Knowledge about
different types of vehicle insurances. Detailed review of cata-
logue systems used for vehicle eval-
uation and calculating repair cost.
Examination of special questions of maintainability and de-
terioration of vehicles.
Solving specific vehicle evaluation problems with statistical
methods.
Human factors of driving road vehicles, reaction time, per-
ception and perceivability. (5 credits)

Vehicle simulation and optimisation

BMEKOVRM638

Dr. Vilmos Zoller

The real vehicle system and its investigation model. The dis-
crete and distributed parameter models, hybrids. Formula-
tion of the system model giving the basis of the simulation
procedura. Typical techniques: linearization, considering
the non-linearities. Parameter space, state space, and exci-
tation space. The stair-like simulation technology. Possibili-
ties for the solution of the system equations: time-domain
and frequency-domain analyses. Numerical solutions by
using digital simulation. Special solvers for differential
equations and their subroutines. Real-time simulations.
Prediction of the motion and loading conditions of vehi-
cles, Statistical analysis of the simulation results. Stochastic
simulation. The problem of system optimization. Selection
of the optimization objective function, action-parameters
and constraint conditions. Analytical and numerical opti-
mization techniques. Problems leading linear programming
(LP). Algorithm and subroutine of the generalized gradient
method. Procedure in case of a random variable valued
objective function (stochastic field). (5 credits)

Vehicle superstructure design

BMEKOJSM667

Dr. László Lovas

Superstructure construction regarding the needs of manufac-
turable design and tooling. Optimization of superstruc-
tures (weight, rigidity, manufacturing). (5 credits)

Vehicle system informatics

BMEKOVJM437

Dr. Ferenc Kolonits

Vehicle Computing System as info. storage, transmission,
grouping, sorting, processing: data representation, data
input, storage, retrieval, transmission, distribution. Deter-
mining document structure. Document description of the
main tools: SGML, HTML, XML and DTD. XSL, DTD: name
structure, syntax, terminal descriptors. Standard and generic
items. Attribute syntax. Namespace applications. Application
type descriptor (entity). Vehicle-document hierarchical
structure and structural levels battery unit, structure, group,
division, sub vehicle. Enlargement of the structure. The
event codes ordering parts. XML editors: XML mind morph,
Xerlin, Web download software use. Clarity. Document
Processing: XSL various tools: Finding the XML document
elements, navigating structural axes. Implementation mech-
anism of the template. Targeted info. Extraction. Processing
Software: COOKTOP (free downloadable software) review
of the principal lines. Using XSL-generator program. The
Xtract software. Vehicle Document Management: perform-
ing elementary operations XSLT routines scenarios and bills
of withdrawal of the document specified. Description of
vehicle structural links: contact and containment relations.
The functional areas and roads setting - the possibilities and
the processing pathes. Graph theoretical analysis of the fail-
ure groups. Production data structures for vehicle system
reliability analysis. The statistical processing programs to
connect preparation. (5 credits)
Description of M.Sc. Subjects
Master Section in Transportation Engineering

Control theory
BMEKOKAM142
Dr. József Bokor
The course provides deepenig of knowledge in control theory. Provides theoretical knowledge, and discusses modern tools, which are necessary in later engineering practice. This is introduced through different examples, taken from vehicle and transportation systems. (3 credits)

Decision making methods
BMEKOKKM221
Dr. Zoltán Békefi
Introduction of the most important methods of operations research and their applications in the transport sector. (5 credits)

Intelligent transport systems
BMEKOKUM205
Dr. János Tóth
The components of intelligent transport systems. The application of ITS on highways and in urban transport. Supporting private and public transport by road and passenger information systems. Traffic management systems. Geographical Information Systems (GIS) in transport. The features and planning principles of GIS databases in transport. The methods of positioning, tracking systems. The vehicle detection and identification systems. Route planning methods. Fleet management. (5 credits)

Mathematics MK
BMETE90MX59
Dr. Sági Gábor
(4 credits)

Road Safety
BMEKOKKM222
Dr. János Juhasz

Transport automation
BMEKOKAM202
Dr. Balázs Sághi
Main topics of the subject include: Basic principles of safety. Development of safety-critical systems System life cycle models Safety requirement specification, safety criterion Hazard and risk analysis techniques Safety integrity of systems Safety analysis Failure management of safety critical systems Introduction to formal techniques, Petri nets (4 credits)

Transport Economics
BMEKOKGM201
Dr. Ferenc Mészáros
Analysis of EU transport strategies in different modes. Monetarising and internalising of transport externalities. (4 credits)

Air Traffic Management (ATM)
BMEKOVRM224
Dr. Dániel Rohács
The course aims at introduction to the basic principles of air traffic control, the categories of airspaces and the main methods and support systems of ATC. The course examine the most important human factors and the main researches. (3 credits)

Communications, Navigation and Surveillance (CNS) I.
BMEKOKAM226
Dr. Dóra Meyer
The aim of the subject is to prove deeper knowledge on planning and operating of air transportation related navigation systems, facilities or devices that have been operationally released to be used either by airspace users (e.g. ground navigation facilities) directly, or are used in the provision of operational air traffic management services. (3 credits)

Controlling systems in transportation
BMEKOKGM215
Dr. Ferenc Mészáros
Introduce the technical, legal, economic, financial, social and institutional frameworks and directives that control operation and improve integration, development of transportation system in European Union. Promoting their domestic adaptation and application. (6 credits)

Electronics – electronic measurement systems
BMEKOKAM103
Dr. Géza Szabó
The subject gives basic knowledge of electronics and electronic measurements and their application in different areas of transportation. It summarizes the operational modes of basic components and basic circuits and describe how one can design and apply them. It gives an overview of electric and mechanical measurements and how the results of measurements can be processed (4 credits)

Forwarding Management 1
BMEKOKKM132
Dr. Ferenc Mészáros
History and attributes of freight forwarding, international agreements, different contract types, rules of extra ordinary freight forwarding, legal framework of customs, tasks of national and international forwarding services. (5 credits)
I+C technologies

BMEOKAM104
Dr. Tamás Bécsi
The course aims at introduction to the basic principles of modern computer architectures, and especially computer systems and communication techniques which are of high importance in transportation. (3 credits)

Information connection of the vehicle and the track

BMEOKAM232
Dr. Géza Szabó
The subject gives an overview of information transmission between infrastructure and vehicles, both logically and physically. Examples are given for railway, road and air transportation sectors. (3 credits)

Material handling and warehousing processes

BMEKOALM225
Dr. Gábor Bohács
The specific properties and main groups of the materials in the logistics systems. The functions of the packaging, packaging nation’s economic role. The classification of packaging, packaging materials - different materials, packaging materials, packaging accessories. Cargo unit creation. Characteristics of the material handling systems, the main groups, material handling tasks, material flow characteristics. The main groups of material handling machines and techniques. Performance and reliability of the material handling systems. Calculation of the material handling time. Material handling process examination. Secondary analysis, layout planning. Conventional storage systems, high bay warehouse systems. Order picking. Statistical sampling procedures. Tenders. (4 credits)

Meteorology

BMEOKVRM231
Dr. Rohács Dániel
The course aims at introduction to meteorological phenomena and conditions, the structure of the atmosphere and other important aviation weather informations. (3 credits)

Modelling and control of vehicles and traffic systems

BMEOKAM233
Dr. István Varga
Design of road traffic systems and traffic modeling practice with state-of-the-art design software:
- microscopic modeling with VISSIM,
- advanced use of VISSIM via COM programming with MATLAB,
- macroscopic traffic planning (classical four-step approach) with VISUM
- application of MATLAB for freeway traffic modeling and control,
- introduction to the application of QGIS. (6 credits)

Numerical methods

BMEOKVRM121
Dr. Rohács József

Smart City

BMEOKKM227
Dr. János Tóth
Smart city introduction, land use functions and models, city planning, utilization of social media, Internet of Things, wireless sensor networks, Smart Grids, lighting, best practices. (3 credits)

Transport informatics

BMEOKKM223
Dr. Csaba Csiszár
The subject is based on Transport information systems I. and II. Main topics: modelling of con-cepts, relations and regularities in information systems and applying of these models in trans-portation. The structure and operation of the transportation organizations and operational con-trol processes (preparation, execution and accounting) are also lectured. (5 credits)

Transport Infrastructure Management

BMEOKKM228
Dr. Ferenc Mészáros
Role of transportation networks and regulatory policies. Asset valuation, asset management techniques and systems. Operation contracts, risk sharing and management. Tasks in adaption to climate change and sustainability principles. (3 credits)

Transport modelling

BMEOKKM229
Dr. János Tóth

Transport operation

BMEOKUM206
Dr. Péter Mándoki
Planning of intermodal node. Infrastructure and vehicles of different transport modes. (5 credits)

Air Traffic Control

BMEOKVRM235
Dr. Dániel Rohács
The course aims at introduction to the basic principles of air traffic management, the history and the main methods of ATM. The course examine the most important elements of the management system, the advantages and disadvantages and the researching of ATM. (4 credits)
Case study
BMEKOVRM237
Dr. Dániel Rohács
The students have to participate in one of the R+D projects of the faculty. (3 credits)

City logistics
BMEKOALM244
Dr. Bóna Krisztián
The main types of transport goods in the city supply networks. The rule of city logistics in the global logistics networks, the definition of last mile problem. The application of transporting systems in the city logistics. Loading technology in the city logistics. The rule of logistics providers in the city supply, the integration of city logistics in the gateway conception. The urban consolidation centres ans x-docks. The control and organisation of city logistics in big cities. Best practises in worldwide. Application of modelling techniques is the organisation and operation of city logistics systems. Informatics in city logistics. (5 credits)

Communications, Navigation and Surveillance (CNS) II.
BMEOKKM239
Dr. Rita Markovits-Somogyi
The course aims at introduction to the systems of navigation, surveillance and data process. The course examine the basic principles of voice communication, the data technologies of air traffic control and complement of the knowledge of course CNS I. (4 credits)

Engineering of transport automation systems
BMEOKAM234
Dr. Balázs Sághi
The aim of the subject is to provede deeper knowlegde on planning of transportation systems. Rules, legislation basics, guidelines for different domains are introduced, planning phases are touched and project work is expected from students. (6 credits)

Environmental effects of transport
BMEOKKM230
Dr. János Tóth
Transport-environment, factors of environmental impact, the problem of sustainability. Mitigation of environmental impacts of transport, regulations, policies, tendencies, practices. Local and international case studies. EIA, decision making, preparation of decisions on the field of transport infrastructure development. Integration of transport and land use. Environmental conflicts of freight transport, intermodality and transit policies. Environmental costs of transport, the case of externalities, prices and charges. Urban transport, opportunities of sustainable urban environmental management, integration of environmentally sound mobility forms. Demand management, parking and road charges. Requirements of fuel efficiency, alternative fuels, energy efficient and environmentally enhanced vehicles. (4 credits)

Financing techniques in transportation
BMEOKKM236
Dr. Zoltán Békéfi
Concepts of financing; financing goals (development, operation); financing options: budget, private or public-private partnerships (PPP); loan, bond, lease and their characteristics. Project analysis and evaluation methods. Project identification, technical preparation, traffic forecast and modeling. Risk assessment needs. Feasibility studies, cost-benefit analysis, financial, social, legal, regulatory and technical compliance criterias. The identification of project risks. Definition of government, regional and local priorities. The role of the partners in the project financing. Communication tasks. The media’s role for accepting the project financing methods by the society. Optimizing fees and tariffs. Financial structures and models. Contracts. (5 credits)

Forwarding Management 2
BMEOKKM133
Dr. Ferenc Mézsáros
Mode specific knowledge of freight forwarding management (road, rail, aviation, inland waterway and maritime, combined and LTL transport). (5 credits)

Forwarding marketing
BMEOKKM135
Dr. Botond Kövári
Marketing concepts, overview of resources. Market analysis methods. Product mix reviews. Advertising strategies. (4 credits)

Human resource management in transportation
BMEOKKM238
Dr. Botond Kövári
Applied human resource challenges, especially in transportation. Motivation, team working, carrier planning (3 credits)

Management of transport and logistic services
BMEOKGM217
Dr. Botond Kövári
The main aim of this course is to develop and implement performance measurement in a transport or logistic organization with the help of a balanced KPI (key performance indicator) system. (6 credits)

Passenger transportation
BMEOKUM208
Dr. Csaba Csiszár
Characterization of passenger transportation systems, properties, planning process. Evaluation of system. Modelling of motion process in regional area. Qualitative system of passenger transport, service levels. Planning of system elements of passengers transport (local and inter-town), in individual and public transport. Overview and summary of properties of the advanced, so called “transitional” passenger transportation modes (e.g. car-sharing, bike-sharing, car-pooling, chauffeur service, demand responsive transport) in system and process-oriented approach. (5 credits)

Project
BMEOKAM242
Dr. Balázs Sághi
Project work (3 credits)
Project management in transportation

BMEKOKKM241

Zoltán Nagy

This course is an introduction to project management in the transportation sector and basic concepts and tools for developing the student’s skills. During this course are presented the most relevant concepts on the formulation and preparation of different transport developing projects and their scheduling and control techniques. Students work with different models and tools for setting professional goals, time management, teamwork and communication techniques. (2 credits)

Safety in air traffic control

BMEKOKAM243

Dr. Dóra Meyer

The aim of the subject is to provide deeper knowledge on planning of safety certification in air traffic control. Rules, legislation basics, guidelines for different domains are introduced, planning phases are touched. (3 credits)

Signal processing in transport

BMEKOKAM211

Dr. József Bokor

Introducing the microcontroller architectures used extensively in transportation systems. Embedded system design, and software development. Digital signal processing: A/D and D/A conversion, filtering and DSPs. Safety critical hardware and software design and implementation. (5 credits)

Supply and distribution processes

BMEKOALM240

Dr. Gábor Kovács

The basics of organizing supply chains (SCM), enterprise logistics system. The organization of the material supplies, material analysis methods (ABC, XYZ), supply strategies (synchronized, by stocking, on request), material planning methods (Gozinto graph, BOM). The inventory systems and processes (rotation indicators), inventory valuation (FIFO), inventory model (EOQ). Distribution systems, demand forecasts (simple methods). Production logistics (MRP, APS, Kanban, Lean). The definition and main tasks of the reverse logistics. (2 credits)

Trade, Financial, Accounting Techniques

BMEKOKKM138

Dr. Ferenc Mézáros

General principles of international trade, stakeholders and their relationships, trade transactions. Set and elements of the banking system, frequent financial transactions of freight forwarders. Accounting obligations and techniques of freight forwarding companies, balance sheet and profit and loss statement. (3 credits)

Traffic flow

BMEKOUM204

Miklós Közel

Analysing, modelling and planning of traffic flow on road transportation network, in consideration of passenger and goods transport. Probability distributions, vehicle in winding way, phasing of traffic lights, road markings, traffic signs, pedestrian flow, traffic calming zones (4 credits)
Description of M.Sc. Subjects

Master Section in Logistic Engineering

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control theory</td>
<td></td>
</tr>
<tr>
<td>BMEKOKAM122 Dr. Péter Gáspár</td>
<td></td>
</tr>
<tr>
<td>The course provides deepening of knowledge in control theory. Provides theoretical knowledge, and discusses modern tools, which are necessary in later engineering practice. This is introduced through different examples, taken from vehicle, transportation and logistics systems. (5 credits)</td>
<td></td>
</tr>
<tr>
<td>Lean management</td>
<td></td>
</tr>
<tr>
<td>BMEKOALM322 János Kosztolányi</td>
<td></td>
</tr>
<tr>
<td>Methods of continuous improvement. The teamwork, establishment of suggestion systems, the role of motivation. Main brainstorming methods, the advantages and disadvantages of each method. Introduction and application of problem finding tools, methods for failure analysis, applicability of the main methods. Data request for failure analysis methods. The basics of standardization, the steps of making standard processes, the zeri failure concept (jidoka, Poka-Yoke), production equalization in lean medenstment: mathematical methods for Heijunka. Process development methods, and techniques. The importance of changeover time, methods for the reduction os changeover time in the companies. The basics of ergonomics, types of workplaces from the aspect of ergonomics, the steps of REBA analysis. Lean office methods and tools. The basics of Six Sigma method, mathematical background, the levels of quality. Description of six sigma analysis, evaluation of the results. The relationship between six sigma and lean. (4 credits)</td>
<td></td>
</tr>
<tr>
<td>Logistics controlling</td>
<td></td>
</tr>
<tr>
<td>BMEKOKKM330 Dr. Szabolcs Duleba</td>
<td></td>
</tr>
<tr>
<td>The primary task of logistics controlling is managing all logistics activities using comprehensive measures on all levels of a company with the provision of information processing systems based on the management’s information needs. After the completion of this module, the graduate will have the knowledge and an understanding of the fundamentals and characteristics of reporting systems for logistics, logistics accounting and cost accounting, activity-based costing, strategic logistics controlling and logistics benchmarking. (3 credits)</td>
<td></td>
</tr>
<tr>
<td>Logistics information system planning</td>
<td></td>
</tr>
<tr>
<td>BMEKOALM321 Dr. Jenő Tokodi</td>
<td></td>
</tr>
<tr>
<td>Logistics information system (LIS) databases. LIS planning. IT representation of system elements, purchase orders, sales, production, quality assurance. System and software planning methods. IT representation of data formats, schemes, process description, Service oriented architecture, webservice, interfaces, Enterprise Service Bus, Orchestrating. ERP webservice, workbench, dictionary, business warehouse, reporting. BI systems. Transactional database. (5 credits)</td>
<td></td>
</tr>
<tr>
<td>Mathematics ML</td>
<td></td>
</tr>
<tr>
<td>BMETE90MX60 Dr. Gábor Sági</td>
<td></td>
</tr>
<tr>
<td>(5 credits)</td>
<td></td>
</tr>
<tr>
<td>Planning of extra-logistics networks</td>
<td></td>
</tr>
<tr>
<td>BMEKOALM337 Dr. Krisztián Bóna</td>
<td></td>
</tr>
<tr>
<td>Algorithm Design</td>
<td></td>
</tr>
<tr>
<td>BMEKOALM326 Dr. Tamás Bécsi</td>
<td></td>
</tr>
<tr>
<td>The course aims the introduction of algorithm theory and numerical complexity. (5 credits)</td>
<td></td>
</tr>
<tr>
<td>Automation of logistics systems</td>
<td></td>
</tr>
<tr>
<td>BMEKOALM325 Dr. Gábor Kovács</td>
<td></td>
</tr>
<tr>
<td>This subject introduces integration of logistics automation into the higher levels of corporate governance. Communication possibilities in PLC networks are also addressed. Introduction of industrial communication protocols and interfaces. Effects of humans, identification and quality checking on automation. (5 credits)</td>
<td></td>
</tr>
<tr>
<td>Demand planning and inventory management</td>
<td></td>
</tr>
<tr>
<td>BMEKOALM328 Dr. Krisztián Bóna</td>
<td></td>
</tr>
<tr>
<td>Specific resource planning areas in the enterprise logistics. Mathematical modeling in the demand planning process, model identification and parameter optimisation. Mathematical modeling in the inventory planning process, select inventory models, optimisation of control parameters, inventory control systems. Measurement of demand and inventory planning efficiency. Specific planning tools of ERP systems. The rule of inventory and demand planning in the S&OP process. (5 credits)</td>
<td></td>
</tr>
<tr>
<td>Enterprise logistics project 1</td>
<td></td>
</tr>
<tr>
<td>BMEKOALM339 Norbert Antal</td>
<td></td>
</tr>
<tr>
<td>Within the framework of the course, project groups are formed from the students, which are led by mentors. The project topics may include: operations management, complex project tasks, R&D tasks, based on the interests of student’s. During the contact hours, the students consult with their mentors, moreover, each week brief report is held. The students present the problems and the suggested solutions, they practice the techniques of discussion, argumentation, and persuasion. (4 credits)</td>
<td></td>
</tr>
<tr>
<td>Forwarding Management 1</td>
<td></td>
</tr>
<tr>
<td>BMEKOKM132 Dr. Ferenc Mészáros</td>
<td></td>
</tr>
<tr>
<td>History and attributes of freight forwarding, international</td>
<td></td>
</tr>
</tbody>
</table>
agreements, different contract types, rules of extra ordinary freight forwarding, legal framework of customs, tasks of national and international forwarding services. (5 credits)

Forwarding project 1.

BMEKOKKM338
Dr. Adám Tóth
Executive knowledge in managing freight forwarding companies. (4 credits)

Logistics planning softwares

BMEKOALM336
Dr. Jenő Tokodi
Classification of softwares in logistics planning. Introduction of software tools in corporate process planning, including designing flow chart (EPC, BPMN), Gantt chart, Fishbone diagram. The functions of computer aided design softwares, basic components, transformations, dynamic blocks, scaling, managing layers. Standard symbols of logistics components. Basic of spatial designing. Project management softwares. (3 credits)

Numerical optimization

BMEKOVRM334
Dr. József Rohács

Process planning

BMEKOALM331
Dr. Gábor Kovács

Simulations planning

BMEKOALM335
Dr. Krisztián Bóna
The types of models, the basics and mathematical rudiments of modelling, Stochastic and deterministic processes, and the main process properties. The definition of computer based simulation modelling and the application in the logistics system planning. Simulation algorithms and programming. Simulation and optimization, simulation based optimization methods. The simulation softwares and simulators. Application of simulation based optimization methods in logistics. Application of artificial intelligence in specific logistics optimization problems. Development of simulation systems and models in intra- and extra logistics systems. (3 credits)

Technical logistics project 1.

BMEKOALM333
Dr. Gábor Bohács
During the classes students of the technical logistics specialization learn advanced engineering planning systems, and their relation to the expert field of logistics. (4 credits)

Control of transport logistics

BMEKOALM341
Dr. Gábor Bohács
The components of the transport logistics control systems. Summary of GIS funds. Operational control problems and tasks of the transport logistics systems. Mathematical modelling techniques, decision supporting of transport logistics control systems. The mathematical model of transportation network. The shortest path search methods. The exact and the provisional planning. Modelling of routes: direct routes, collecting and distributing routes. The traveling salesman problem (TSP) and the vehicle routing problem (VRP). Soft computing methods. The IT architecture of the freight control systems. The mobile devices. The connection between the freight exchanges and the transport logistics control systems. (3 credits)

Enterprise logistics project 2.

BMEKOALM343
Norbert Antal
As the continuation of the Enterprise logistics project 1., the project groups get operations management tasks, complex project tasks or R&D tasks, based on the interests of student’s. The task can be the continuation of what are launched in Enterprise logistics project 1., however, a new task also can be started. During the contact hours, the students consult with their mentors, moreover, each week brief report is held. The students present the problems and the suggested solutions, they practice the techniques of discussion, argumentation, and persuasion. (7 credits)

Forwarding Management 2

BMEKOKKM133
Dr. Ferenc Mészáros
Mode specific knowledge of freight forwarding management (road, rail, aviaton, inland waterway and maritime, combined and LTL transport). (5 credits)

Forwarding marketing

BMEKOKKM135
Dr. Botond Kővári
Marketing concepts, overview of resources. Market analysis methods. Product mix reviews. Advertising strategies. (4 credits)
Forwarding project 2.
BMEKOKKM342
Dr. Ferenc Mészáros
Executive knowledge in managing freight forwarding companies. (2 credits)

Integrated material flow systems
BMEKOALM332
Dr. Gábor Bohács
Traditionally materials handling systems are separated from technology. There are however special applications, such as assembly lines in the electronic industry where the material handling systems are in strong integration with the technological equipment. During the classes these special machines are addressed. (4 credits)

Planning of plant logistics systems
BMEKOALM327
Dr. Krisztián Bóna
The specific properties and planning process of plant logistics systems. The main steps and tasks of logistics planning. The plant layout planning techniques and methods. The specific plant layout topologies. Optimization and heuristic methods in plant layout design. How to create a logistics system plan in case of a plant logistics system? The material flow system architecture in a plant. The planning steps of the material flow systems in a plant. The methodology of material flow system planning, the main heuristic an optimization models. Analytical queueing theory and simulations methods in the planning of plant logistics systems. Integration of the basic arguments of lean in the planning process. (5 credits)

Planning of warehousing systems
BMEKOALM323
Dr. Krisztián Bóna
The main material flows and processes in a warehouse. Specific logistics system planning methodology of warehousing systems. The typical logistics technology variations of storing. Planning of transporting connections and loading technology. Planning the dimensions of loading bays, and preparation areas of warehouses. Order picking methods and systems. The technology of order picking. Planning of order picking process. Planning the topology and layout of storage systems. How to create a logistics system plan of a warehousing technology? (5 credits)

Production planning & scheduling
BMEKOALM329
Dr. Krisztián Bóna
Theory of production planning and scheduling. Main topics, goals and constraints in the production systems, the system architecture of production control. Modelling of products and production technology. Connection points to the customer orders and forecasts. Then main production strategies. Production and capacity planning. The time view of production scheduling, the long, middle and short term planning. The informatics of the production planning and scheduling. Production planning and scheduling algorithms. The role of production planning in the S&OP process. (4 credits)

Technical logistics project 2.
BMEKOALM340
Dr. Gábor Bohács
During this subject students perform and complete a technical logistics project in groups. These can originate from either the industry or from defined research and innovation tasks. (7 credits)

Trade, Financial, Accounting Techniques
BMEKOKKM138
Dr. Ferenc Mészáros
General principles of international trade, stakeholders and their relationships, trade transactions. Set and elements of the banking system, frequent financial transactions of freight forwarders. Accounting obligations and techniques of freight forwarding companies, balance sheet and profit and loss statement. (3 credits)
PRE-ENGINEERING COURSE
Pre-Engineering Course

The Budapest University of Technology and Economics (BME) is one of the leading universities in Europe and a member of CESAER (Conference of European Schools for Advanced Engineering Education and Research), with a high admission standard.

The Hungarian secondary schools have very high level final exam in mathematics and physics, one of the highest in the world, as it has been proved through international competitions. Very often, there is a gap between the Hungarian and foreign students’ secondary school’s education program as far as the preparation for engineering studies are concerned. Many students are not trained enough to solve complex problems. Therefore the Pre-Engineering Course is designed to help students develop the basic skills necessary to successfully pursue engineering studies at the Budapest University of Technology and Economics or any other engineering or science-oriented university with high academic standards.

The program lasts one academic year and offers intensive instruction in mathematics, physics, and English language. In addition, students are introduced to conceptual approaches in engineering.

New students at the Budapest University of Technology and Economics take a required Placement Test on the week before the academic year starts (see the Academic Calendar). Based on the results of this test, students will either be accepted into the first semester of the undergraduate program (BSc), or will be instructed to the Pre-Engineering Course prior to the undergraduate program.

Students who think they would benefit from the profound preparation of the Pre-Engineering Course may simply register for the Pre-Engineering Course (without taking the Placement Test).

Exams are given at the end of each semester of the Pre-Engineering Course. Students who achieve at least good results at the end of the second semester can begin their first year engineering studies at the Budapest University of Technology and Economics without taking the Placement Test.

Students who will not continue their studies at the Budapest University of Technology and Economics can take any of the individual subjects on a credit basis. Acceptance of the credits depends on the student’s home institution.
Description of Subjects

Description of 1st Semester Subjects

(Fall)

Introductory Physics I

Mechanics

Electricity

Introductory Mathematics I

Algebra

Geometry

- Elements of geometry: circumference and area of geometric figures, surface area and volume of geometrical solids. Right triangle trigonometry. Law of cosines and sines. To solve a triangle. Trigonometric identities, equations. 4 hours/week.

(0 credit)

Description of 2nd Semester Subjects

(Spring)

Introductory Physics II

Vibration, Waves, and Thermodynamics

Optics and Atomic Physics

- Optics: fundamental concepts of optics; reflexion, refraction, dispersion of light; coherence of light; light as electromagnetic wave; interference, diffraction, polarization; holograms. Atomic physics: photoelectric effect; wave particle duality; hydrogen atom model. 2 hours of lectures with demonstrational experiments and problem solving practice 4 hours/week.

Introductory Mathematics II

Algebra

Geometry

- Coordinate system. Distance and midpoint formula. To sketch a graph. Equations of a line. The circle. Quadratic functions and parabolas. Ellipse and Hyperbola. Trigonometric functions. Complex numbers. Complex algebra. 4 hours/week.

Computer Algebra

Compulsory English for Pre-Eng. Students

(0 credit)

Elective subjects (2nd Semester)

Computing

General informations about computers and peripheral devices. Algorithms and programs. PASCAL Programming Language. 2 hours/week.

Engineering Drawing

Rules and conventions of engineering drawing. Descriptive geometry. 2 hours/week.

Advanced Algebra

Excursions - Solt
Excursions - Hortobágy
Excursions - Sopron
Graduation Speech

“Do not go where the path may lead, go instead where there is no path and leave a trail”

I am most honored to be called amongst many to give this speech on this special occasion. I stand here today to reinforce character and vision.

I started by grace and have finished by grace, and I thank God, my parents, my lecturers, my fellow graduating students, and of course you sited here as well as my friends, for this rare opportunity to stand before you. Have you ever sat in your mums chair at her office, and in her absence you had to sign the collection of a letter (your admission letter) which was delivered to her, and yet you did not know it was your admission letter to school abroad, I guess not, but that was me signing the collection of that letter more than four years ago.

Leaving your mother land to a foreign land to be educated should not be done without vision/dream. Four and half years ago I could have fallen prey to the lack of vision, stepping my feet into Hungary and listening to those who at the time had no vision telling me to be comfortable with the poorest of academic grades, and I thought to myself if the reason for being educated in this institution is to fall short of my expectations then I could have as well been home schooled, I decided not to speak with poor minds on serious issues for I had vision.

This group of graduates has been strong, tough and thriving, having clearer vision by the day, walking with any of them would leave a lesson of hard work and the ability to bend due to tough academic work and yet not be bent. Budapest University of Technology and Economics in my short experience is not a place for poor minds so I urge you to be visionaries if you must take the world by storm.

We are here today to celebrate the end of a very significant phase in life and the beginning of the next most important phase of a new life outside school. The world has been waiting for us and we are now ready for them. I believe that the lessons learnt here at BME, from the accomplishments/successes, failures and studies, means we now posses the skills to learn, aptitude to succeed, ability and creativity to make a difference, to work to meet world needs and to assist in solving the problems facing the society at large. Knowledge as we know is power and it is gotten from education, although it might seem expensive buy it, for ignorance is more expensive. This school has taught us the elements of character and vision, on this note I want to encourage all students to show character, have vision and pursue it, and if an opportunity of success has not knocked on your door build a door and keep in mind that neither success nor failure is final keep succeeding.

To accomplish great things today and in the future, we must not only dream, but also act, and not just act but plan and believe in our dreams and vision, for “the future belongs to those who believe in the beauty of their dream”, and “I hope your dreams take you to the corners of your smile, to the highest of your hopes, to the windows of your opportunities and to the most special places your heart has ever known”.

232
Courses and Doctorate schools at BME

We offer undergraduate & PhD courses in:

- Architecture
- Architectural Engineering
- Civil Engineering
- Chemical Technology
- Electrical Engineering
- Information Technology
- Mechanical Engineering
- Mathematics
- Physics
- Cognitive Science

Doctorate Schools

- Géza Pattantyús-Ábrahám PhD School in Mechanical Engineering
- PhD School in Computer Science and Information Technology
- PhD School in Electrical Engineering
- Kálmán Kandó PhD School in Mechanical Engineering
<table>
<thead>
<tr>
<th>Fall Semester: All accepted Preparatory Beginners</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registration in Students’ Office, Bldg. R 1. (after payment of tuition fees) 28 Aug – 8 Sept 2017</td>
</tr>
<tr>
<td>Appointments for Obligatory Medical Check-up (Necessary for Health Insurance). 28 Aug – 8 Sept</td>
</tr>
<tr>
<td>Preparatory Classes (Math, Physics) for Placement Test 23 – 25 August</td>
</tr>
<tr>
<td>Placement Tests: Math (28.08.), Physics (29.08.) and English Language (30.08.) 28 – 30 August</td>
</tr>
<tr>
<td>Orientation Program Newly enrolled regular and Exchange Students 4 – 8 September</td>
</tr>
<tr>
<td>Placement Test Results Posted Outside Student’s Office 1 Sept at 12 am</td>
</tr>
<tr>
<td>Preparation of Schedules for Freshmen in Bldg. R 1. Student’s Office 1 Sept at 12 am – 1 pm</td>
</tr>
<tr>
<td>First Day of classes 11 Sept at 8:15 am (Monday)</td>
</tr>
<tr>
<td>Opening ceremony 28 Sept (Thursday)</td>
</tr>
<tr>
<td>Last Day of Classes 8 Dec (Friday)</td>
</tr>
<tr>
<td>Examinations in fall semester 2016/2017 18 Dec 2017 – 22 Jan 2018</td>
</tr>
<tr>
<td>Winter Holidays 23 Dec 2017 - 2 Jan 2018</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fall Semester: BSc/MSc Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registration in Student’s Office 21 Aug – 1 Sept 2017</td>
</tr>
<tr>
<td>First Day of Classes 4 Sept 2017 (Monday)</td>
</tr>
<tr>
<td>Last Day of Classes 8 Dec 2017 (Friday)</td>
</tr>
<tr>
<td>Delayed submission 11 Dec 2017 – 15 Dec 2017</td>
</tr>
<tr>
<td>Examination Period (Check with your Faculty!) 18 Dec 2017 – 22 Jan 2018</td>
</tr>
<tr>
<td>Winter Holidays for All Students 23 Dec 2017 – 2 Jan 2018</td>
</tr>
<tr>
<td>Last Day of Final Exams 26 Jan 2018</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring Semester: All Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registration in Students’ Office, Bldg. R 1. 31 Jan - 2 Feb 2018</td>
</tr>
<tr>
<td>Orientation program Newly enrolled regular and Exchange Students 31 Jan - 2 Feb 2018</td>
</tr>
<tr>
<td>First Day of Classes 5 Feb 2018 (Monday)</td>
</tr>
<tr>
<td>Last Day of Classes 18 May 2018 (Friday)</td>
</tr>
<tr>
<td>Delayed submission 22 May – 28 May 2018</td>
</tr>
<tr>
<td>Examination Period (Check with your Faculty!) 29 May – 25 June 2018</td>
</tr>
<tr>
<td>Last Day of Final Exams 2 July 2018</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Days off for All Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sports day 20 Sept 2017 (Wednesday)</td>
</tr>
<tr>
<td>National Day 23 Oct 2017 (Monday)</td>
</tr>
<tr>
<td>All Saints’ Day 1 Nov 2017 (Wednesday)</td>
</tr>
<tr>
<td>Students’ Sci. Con. 16 Nov 2017 (Thursday)</td>
</tr>
<tr>
<td>Open Day 24 Nov 2017 (Friday)</td>
</tr>
</tbody>
</table>